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Abstract

Two beam coupling (TBC) is a coherent interaction in which energy is transfered from

one laser beam to another and has promising applications in real-time holography and

coherent beam combing. We have recently shown efficient degenerate frequency TBC

for counter-propagation geometries in isotropic two-photon absorbing media pumped

with a nanosecond pulsed laser. When an interference pattern is generated in this me-

dia, single and two photon absorption initiates a population redistribution resulting

in a holographic grating with the same modulation period and phase initially. How-

ever, due to temporal convolution of self- and cross-phase modulation, the grating

will begin to shift in time relative to the interference pattern thus allowing coher-

ent energy transfer to evolve. A comprehensive theoretical and numerical model is

presented consistent with empirical results and historical observations of both energy

and phase coupling. Numerical simulations indicate the presence self-oscillation due

to nonlinear phase wrapping and strong excited state absorption inhibit energy trans-

fer in a co-propagating geometry. However with proper temporal phase conditioning

and choice of medium thickness, significant energy transfer can be achieved in the

co-propagating case.
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Dynamic Holography in Resonant Nonlinear Media: Theory and Application

I. Introduction

Two-beam coupling (TBC) in Kerr media was first addressed in 1982 and 1984

with the work of Silberberg and Bar-Joseph [45, 46]. These seminal derivations in-

volved mutually coherent fields of non-degenerate frequency interfering in a nonlinear

media with a finite lifetime. Steady state solutions were provided that predict self-

oscillation and instability above a certain threshold field intensity with non-reciprocal

response in both energy and phase transfer. Much of the experimental observations

of instability and self-oscillation at that time centered on bistable cavity systems con-

taining Kerr media where optical feedback is present [17],[28],[16],[60],[3]. The initial

work [45] centered on counter-propagating fields exclusively to illustrate the effect

could occur in free-space without cavity confinement. This theory was extended [46]

to include free-space interactions of any geometry including the co-propagating case

and referenced the mathematical relationship to the stimulated Raman scattering.

The free-space derivation was ultimately used for the textbook embodiment of Boyd

[6]. Seemingly independent, Yeh followed with a steady-state derivation [62, 63] and

again concluded that the phenomenon was analogous to stimulated scattering and

the photorefractive effect [21]. Finally and most recently, Chi et. al. published a

general model of TBC in nonlinear media in 2009 [8] to disambiguate observations

in Kerr media relative to the photorefractive effect. Each derivation [46, 62, 8] has

the common conclusion that steady-state models of energy transfer in Kerr media

will not couple with degenerate frequency interactions. Explicit frequency detuning

is required and furthermore, the optimum detuning is inversely proportional to the
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time constant of the nonlinearity.

The spectral constraint imposed on Kerr media is in stark contrast with TBC

in traditional photorefractive media where optimal TBC occurs for exactly the de-

generate frequency case [8]. The physical reason for this lies in the locality of the

nonlinearity. In Kerr media, the holographic grating occurs local to the interference

pattern and the requisite dephasing occurs through the frequency mismatch. That

is, the interference pattern translates with time and the grating lags due to the finite

lifetime of the nonlinearity. In photorefractive media, the grating occurs non-local to

the interference pattern due to charge migration and the formation of a space charge

field (SCF). The resultant holographic grating evolves exactly ninety degrees out of

phase corresponding the optimum phase shift for energy transfer [32, 21]. Timescales

for the different cases are also important to note. While the photorefractive effect

enjoys the optimum phase shift by virtue of the unique SCF physics, charge mobility

is slow compared to the effectively instantaneous local effect seen in Kerr media. The

obvious cost is efficiency as the product of timescale and magnitude of nonlinearity

is generally held constant. This invariant is a common refrain in nonlinear optics.

Specific to this work, a 2009 review article on ”Nonlinear refraction and absorption:

mechanisms and magnitudes” [9] references a 1986 study that concluded ”to within a

couple of orders of magnitude, the product (n2 x response time) is a constant. Twenty

years later, this conclusion is still valid for nonlinearities ranging over 16 orders of

magnitude!” The authors use of n2 is a generalized nonlinear refractive index. A

second and equally important example is the phenomenon of ”reciprocity failure” in

photorefractive polymers presented by Blanche et. al. [2]. It was shown that the

strength of TBC in photorefractive media decreased dramatically over nine orders of

magnitude (seconds to nanoseconds) in pump pulse width.
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1.1 Degenerate Frequency TBC with Local Gratings

Regardless of efficiency, degenerate frequency TBC in Kerr media has been ob-

served albeit under special conditions. The process can be seeded through either

self-action of the nonlinear medium or a structured frequency chirp in the field. Dut-

ton et. al. described the first degenerate frequency TBC interaction in Kerr media

in 1992 [15]. Dutton’s model utilized self- and cross-phase modulation (S/XPM) as

the source of frequency detuning. Because of the explicit time dependence of this

self-action, the resultant system of integro-differential equations do not have simple,

closed form solutions like those of the steady-state models. Numerical solutions for

experimental results were provided for a co-propagating pump/probe geometry. The

nonlinear media, carbon disulfide (CS2), has a persistent lifetime on the order of 1

picosecond (psec) or about ten times shorter than the pulse width of the laser in that

experiment. Coupling efficiencies were modest at less than 10%. Not surprisingly,

S/XPM driven TBC was shown to have a nonlinear dependence with pump beam

intensity.

Soon thereafter in 1997, a nearly identical experiment was performed with an

alternate theoretical explanation. Dogariu et. al. concluded that frequency chirp in

psec laser pulses was the driving force in CS2 [13]. In this case the coupled fields

can have degenerate frequency content, i.e. the pump and probe beams are derived

from the same source and coupling is enabled through targeted delay relative to the

nonlinear medium. Modest coupling, less than 5%, was shown to be linear with

pump intensity consistent with the chirp-driven theory presented. Additionally, Tang

and Sutherland published a comprehensive model involving chirp assisted TBC in

1997 [56]. Regardless of the driving force, S/XPM vs. chirp, the theoretical models

provide valuable insight into how these two explanations would express themselves

experimentally. In addition to the linear vs. nonlinear probe gain, the S/XPM case
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would show a characteristic asymmetry in coupling efficiency as a function of relative

time delay between pump and a weaker probe. Chirp-driven TBC on the other hand

would be symmetric regardless of the pump/probe intensity ratio.

In 2001, Sylla and Rivoire provided experimental results using different polariza-

tions of the pump laser in liquids, CS2 and nitrobenzol, as well as solid state media,

zinc selinde (ZnSe) and bismuth germanium oxide (BGO), with a co-propagating ge-

ometry [55]. Noticeably the ZnSe signal was approximately two times larger than

CS2 with the opposite sign, and noticeably asymmetric. This would be consistent

with the known negative sign of free carrier refraction in ZnSe and positive sign of

CS2 molecular reorientation. Again, the coupling efficiency was relatively weak with

this psec pump source.

In each of these cases the experimental work was limited to psec pulse interactions

to take advantage of both the perceived nonlinear enhancement on that time scale

and/or the larger spectral bandwidth provided by shorter pulses. Energy transfer in

these examples was relatively weak and the phenomenon was generally treated as a

deleterious effect in pump-probe spectroscopy [58].

1.2 Discovery of Degenerate Frequency Stimulated Scattering

In 2004, He et. al. published the initial work in what was named stimulated

Rayleigh-Bragg scattering (SRBS) [23]. He et. al. would follow with other examples

of SRBS in Kerr media [24, 25], and the proposed theoretical model was summarized in

a book chapter [22]. As recently as 2019, He et. al. have extended the theory of SRBS

to include the phenomenon of stimulated Mie scattering (SMS) utilizing a similar

static holographic model [26, 27]. Because of the apparent degenerate frequency

nature of SRBS, He et. al. proposed that the origin of the scattered field was a

result of the formation of a standing Bragg grating generated from the interference
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of a Rayleigh scattered beam, or any elastic source of backscatter, and the incident

pump beam inside the nonlinear medium. The theoretical treatment followed closely

to the Kogelnik derivation for thick holograms [30], but as Sutherland pointed out

this would seem to violate well established TBC theory as outlined by Silberberg[46]

and Yeh [62] and provided an alternative theory involving finite chirp in nanosecond

pulses as the possible source of dephasing [53]. This author’s work [48, 49] attempted

to reconcile the theoretical discrepancy by showing the energy transfer was likely

due to S/XPM-driven TBC as evidenced by the asymmetry in coupling vs. relative

temporal delay consistent with Dutton et. al. [15].

Much of theoretical understanding in degenerate and non-degenerate frequency

TBC in Kerr media was derived in the 1980s and 1990s [46, 62, 15, 56]. Despite the

apparent disagreement of the SRBS and SMS, the physics of TBC in nonlinear media

is well understood with sound theoretical footing. It would be fair to ask why it is

worth revisiting now. For one, nonlinear optical media has advanced significantly

since 1990s. For example, the organic dye solution used in [49] and similar materials

utilized in the SUNY-Buffalo group [23, 24] have strong two-photon absorption (2PA)

coupled with a strong excited state absorption (ESA), also known as an effective three

photon absorbing molecule (E3PA)[54]. The population redistribution that results in

ESA also generates a dynamic change in the refractive index of the medium through

the Kramers-Krönig relationship (e.g. see [9] and the many references therein). It

should be noted that the SRBS and SMS efficiencies along with the Fresnel coupling

shown in [49] are significant compared to the antecedent work with psec pump sources.

Fresnel coupling alone has been shown to exceed 60% efficiency or a amplification of

approximately 15 times the probe input. This is perhaps the most intriguing reason

as this would seem to break through the limitations of ”reciprocity failure” men-

tioned previously, i.e. a highly efficient, rapid holographic amplifier. The numerous
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publications in recent years by the He group at SUNY-Buffulo would indicate there

is still an intense interest in degenerate frequency TBC. The progress from SRBS to

SME illustrates an apparent attempt to enhance the scattering signal though material

engineering. Taken together, the potential for coherent amplification, disagreement

with established theory, and ongoing material design efforts indicate a strong need

for a comprehensive S/XPM-driven TBC theory in 2PA/E3PA media in the nsec

regime. Furthermore, the compounding and transient nature of the nonlinearity on

this timescale does not afford closed-form steady state solutions [18]. Therefore, this

drives an additional need for an accurate numerical simulation to provide a ground

truth for further material development and transition to application.

Computational electromagnetism (CEM), or more importantly computation power,

has also advanced in the last 20 years which allows us to explore interaction scenar-

ios that would not have been possible before. For example, numerical recipes may

utilize varying spectral bandwidths, spectral chirping, temporal pulse shapes, spatial

distributions, and a battery optical nonlinearities ranging from near instantaneous to

practically infinite. The development of nonlinear beam propagation (NLBP) [11, 44]

has enabled simulation for interactions of multiple, coherent fields in contemporary

nonlinear media. This will lead to a stronger ability in applying this somewhat ob-

scure physics for a diversity of applications.

Perhaps an even better reason for revisiting degenerate frequency TBC in novel

nonlinear media is the potential to address some of todays most challenging electro-

optical (EO) problems. In fact many of these applications were presented early in

the formulation of TBC theory [63] but have not yet been realized. In a practical

sense, TBC is a coherent optical power transfer from one beam to another and has

nearly innumerable photonic applications. For example, coherent beam combining

can be used for power scaling or real-time holographic projection. The term coherent
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is critical. This implies not only the exchange of energy but also the transfer of phase

information.

1.3 Dissertation Outline and Objectives

Chapter 2 will discuss the theoretical derivation of S/XPM-driven, degenerate

frequency TBC unique to 2PA/E3PA nonlinear media. While this has been generally

covered in the steady-state [8], this work will present a comprehensive model including

explicit contributions from well-defined nonlinearities including χ(3) and population

distribution. A system of coupled integro-differential equations will be presented

consistent with established theory.

Chapter 3 covers the experimental and numerical methodologies. Numerical

recipes for the system of coupled amplitude equation derived in Chapter 2 will be

formulated. All optical geometries will be considered including co- and counter-

propagation as well as the scenario where the probe field is derived from the pump

through elastic scattering or more specifically derived from a Fresnel reflection. For

co-propagation or single field cases, standard split step nonlinear beam propagation

will be utilized [18]. For counter-propagating fields, an iterative method will be em-

ployed [44] and radial beam propagation is adopted for transverse diffraction [20]

to minimize computational cost. This chapter will also describe the experimental

procedures for data collection including spatial beam resolution for single beam and

co-propagating embodiments. Additionally, spectral bandwidth measurements are

described to further validate the degenerate frequency theory of He et. al. [22].

In Chapter 4, the experimental results will be presented as validation for the

numerical model developed in Chapter 3. Unique geometrical observations will be

presented for degenerate frequency TBC in 2PA/E3PA media and validated with

theory. Comparison to the existing static holographic model of He et. al. will be
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discussed. An attempt to observe TBC in solid state semiconductors is also addressed.

Finally, Chapter 5 offers conclusions to the work and extrapolation of TBC the-

ory in resonant Kerr media to potential applications specifically power scaling and

holographic transfer possibilities.
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II. Theory

The theoretical discussion will begin with a section describing the mechanisms that

govern resonant Kerr media and how these interactions effect the complex refractive

index. Some contributions are effectively instantaneous on the nsec timescale of

interest in this work, while others are cumulative with distinct time constants. The

second section will cover the central topic of this work: the coherent nature of TBC

and the how this phenomenon is enabled in nonlinear media. The derivation will

be mostly classical electrodynamics with a brief discussion of quantum dynamics to

illustrate the coherent nature.

Depending on the material class and timescale of interaction, numerous physi-

cal mechanisms may contribute to degenerate frequency TBC. This work will focus

primarily on linear absorption and 2PA initiated population redistribution or photo-

ionization in semiconductors and is a representative flowchart is shown in Figure 1.

For reference the flowchart includes the path for space charge field generation which

governs the photorefractive effect. The timescales are nominal but consistent with

literature. The main purpose is to illustrate the large difference in response time of

S/XPM-driven TBC relative to non-locally-driven photorefractivity.

2.1 Resonant Kerr Media

The fundamentals of nonlinear media are generally tied to the interactions of

light and matter under intense radiation and has been focus of numerous textbooks

[6, 37, 52, 43, 7]. Displacement of the bound electron cloud is classically consid-

ered as the source of the refractive index, also known as the radiating dipole model.

Under extreme conditions, this same explanation governs perturbations to the elec-

tronic susceptibility which enables the common nonlinearities of frequency conversion,
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Figure 1. Possible nonlinear mechanisms for enabling TBC including local Kerr and
non-local effects. By far the most common approach in the literature is the non-local
photorefractive effect. However, the timescale of this mechanism results in the phe-
nomenon of reciprocity failure [1] due to the requisite charge diffusion and limitation in
carrier mobility. Conversely, the local path enabled by the imaginary parts of χ(1), lin-
ear absorption, or χ(3), 2PA, trigger rapid, near instantaneous coupling via a cumulative
nonlinearity such as population redistribution.
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two-photon absorption, and self-focusing to name a few examples. Additionally in

resonant media, these bound electrons can simultaneously be excited into a mani-

fold of higher energy electronic states each with its own persistent contribution to

the complex refractive index, i.e. absorption and refraction. In some cases, extreme

excitation can result in free charge carriers particularly in semiconductors or doped

dielectrics which also results in a transient change to the complex refractive index of

the medium. Charge carriers are then free to move and may become trapped in pref-

erential areas resulting in non-local, static electric fields which can drive TBC by way

of the second order nonlinear electronic susceptibility known as the photorefractive

effect.

The Electronic Susceptibility.

The classical origins of nonlinear media is described by anharmonic response of the

bound polarization in the oscillating dipole model of dielectric media and is treated as

a power series expansion with the electric field as shown in equation 1 [37, 6]. For weak

fields the dipole oscillation is dominated by the harmonic term and the polarization

is linear. However, for strong electric fields, the dipole displacement vector is stressed

due to realization of the restoring forces on the electron which introduce nonlinear

components. This expanded susceptibility is then substituted into the wave equation

to resolve which contributions contribute to desired nonlinear optical phenomena.

~D = ε0 ~E + ~P = ε0 ~E + ε0χ
(1) ~E + ε0χ

(2) ~E2 + ε0χ
(3) ~E3 + ... (1)

The apparent Taylor series expansion of the electronic susceptibility may seem

arbitrarily mathematic until we apply the symmetry conditions. For a bound electron,

a real potential energy well exists that is anharmonic. The decomposition into a

Taylor series expansion has material consequences which are easily provable. For
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example, a material that has inversion symmetry must satisfy the following equation

with respect to electric displacement

U(X) = U(−X) =
1

2
mω2

0X
2 +

1

2
amX3 +

1

4
bmX4... (2)

which requires the first order correction (or second order electronic susceptibility)

must be equal to zero. As a result, centrosymmetric media simply cannot generate

a χ(2) response and will not allow for parametric frequency conversion. This imparts

a very real physical consequence that to achieve second order effects, the material

must be non-centrosymmetric. Furthermore, because the effect is weak, this sym-

metry requirement must be maintained over large physical distances to enable the

practical realities of the Pockel’s effect and frequency conversion which requires the

additional complication of phase matching. The physical consequence of this is that

second order effects such as frequency conversion must occur in media with large scale

order. This is easily demonstrated empirically as almost all commercial examples of

frequency conversion are performed in crystalline media. For classical derivation of

the symmetry rules governing the second order nonlinear susceptibility, see Ref. [37].

The third order nonlinear susceptibility (second order correction in Equation 2),

and higher odd orders, on the other hand can exist in centrosymmetric media includ-

ing isotropic liquids. The primary consequence of this is that the nonlinear coefficient

for third order effects is substantially smaller than the second order and requires more

intensity, or irradiance, for observation. The third order nonlinear susceptibility can

also be complex valued. With the imaginary part contributing to two-photon ab-

sorption and its real part governing the instantaneous Kerr effect. Both cases are

automatically phased matched resulting in an intensity dependent complex refractive

index. For a single input beam, the complex amplitude equation for a third order
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Figure 2. Anharmonic nature of bound electrons that originates the nonlinear elec-
tronic susceptibility. In this simple ball and string illustration, the potential energy
well is distorted due to restoring or repulsive forces as the electron is pushed away from
equilibrium. This function can be projected onto a polynomial basis where each correc-
tion contributes to unique phenomena in nonlinear optics and explains the symmetry
rules governing those effects.

nonlinearity is expressed as

dA

dz
= iχ(3)|A|2A. (3)

If we define χ(3) as

χ(3) = i
2π

λ
γ − β

2
(4)

where γ and β are the Kerr and 2PA coefficients, respectively. Substitution of 4 into

3 followed by conversion into irradiance and phase equations utilizing the equality of

dA

dz
=
d
√
I

dz
exp(iφ) + i

√
I exp(iφ)

dφ

dz
(5)

and

A =
√
I exp(iφ) (6)
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provides the canonical irradiance and phase equations of

dI

dz
= −βI2, (7)

and

dφ

dz
=

2π

λ
γI, (8)

respectively. Equation 7 describes 2PA and represents loss. Equation 8 governs self-

phase modulation (SPM). For two beams, the coupled amplitude equation becomes

d

dz

 A1

±A2

 = iχ(3)

 |A1|2 + 2|A2|2 0

0 |A2|2 + 2|A1|2


 A1

A2

 (9)

with the plus or minus of A2 dependent on co- or counter-propagation, respectively.

Similarly, equation 9 may also be written in terms of irradiance and phase as

d

dz

 I1

±I2

 = −β

 I1 + 2I2 0

0 I2 + 2I1


 I1

I2

 (10)

and

d

dz

 φ1

±φ2

 =
2π

λ
γ

 I1 + 2I2 0

0 I2 + 2I1

 . (11)

In addition to the single beam terms, the two beam case now has coherent absorption

and cross-phase modulation (XPM) terms and are only present when the electric fields

have parallel polarizations. It should also be noted that on the timescales relevant to

this work, S/XPM derived from the Kerr nonlinearity is generally swamped by the

cumulative effects discussed in the next section and is often neglected. By itself, 2PA

is also a weak effect however its contribution to the source terms in the cumulative

nonlinearities is critically important.
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Cumulative Population Redistribution.

For all the cases presented in this work so far, nonlinear effects originating from

the displacement of the electron cloud, or radiating dipole model (electronic suscep-

tibility), are considered instantaneous or much, much faster than a nsec laser pulse.

As perturbations, these contributions are generally weak. However, these effects can

seed further cumulative nonlinearities generating local and non-local changes to the

refractive index. For example in the work or Dogariu [13], the physical manifestation

of the nonlinear refractive index was the reorientation of solvent dipoles in carbon

disulfide. The atomic movement does not decay instantaneously providing the req-

uisite persistent nonlinearity for TBC in that case. Molecular reorientation of this

kind has a decay on the order of a few psec. The compounding nature of cumulative

nonlinearities is such that longer lifetimes lead to larger changes in the refractive

index as one might expect through the convolution integral. As a result, the total

refractive index change for molecular reorientation is relatively small. In contrast,

resonant effects by way of population redistribution can be substantial.

For semiconductor media, photoexcitation of free carriers into the conduction band

results in a overall change in the optical properties. These values can be approximated

through first principles [31] or with semi-empirical approaches [9]. The physical model

is defined by the Drude-Lorentz theory. Promotion of a free carrier into the conduction

band results in a change in conductivity which leads to a change in the dielectric

constant and therefore a change in the complex refractive index. This photoexcitation

can be achieved from linear absorption or via 2PA (imaginary χ(3)). Once in the

conduction band, these carriers will eventually decay back to the valence band by

way of recombination or Auger annihilation. If the lifetime of the carriers in the

conduction band is long compared to the excitation pulse, a significant population

will accumulate creating a bulk change in the complex refractive index. This change
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in refractive index can be significant has been extensively studied [19, 57, 41].

In contrast to semiconductor physics, organic media are for the most part insulat-

ing even under intense laser radiation. Even in the case of ionization, charge mobility

is generally poor and recombination occurs rapidly. The electro-optical utility of or-

ganic dielectrics lies in the redistribution of bound electronic transitions as outlined

in Figure 3. Each excited state contributes a different complex refractive index. As

light is absorbed, either by 1PA or 2PA, the excitons (excited molecules) will cascade

through the various higher energy states according to the temporal dynamics asso-

ciated with state lifetime. The material benefit of this model is that some of these

states particularly the forbidden triplet states (Tn) can have lifetimes in the 100s of

microseconds or even longer under the right conditions [54, 40, 39].

Figure 3. The Jablonski diagram outlines the population redistribution pathways for
organic and semiconductor, i.e resonant Kerr, media. Excited states or free-carriers
may be promoted into the excited state manifold or conduction band by either one
or two photon excitation where they will persist with a finite lifetime, τN . In this
state, the particles contribute changes to the total complex refractive index leading to
nonlinear refraction or absorption.
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Population redistribution plus charge diffusion leads to space charge field which

can drive the second order nonlinearity. Automatically phase shifted grating and

interference pattern leads to efficient TBC however the process is generally slow due

to charge mobility. Furthermore, in the cases presented here, the organic media is

purely isotropic without a χ(2). Even if free charges are generated and diffuse to form

a SCF, there is no second order nonlinearity available to initiate the photorefractive

effect.

Transient population redistribution can lead to changes in bulk optical properties

[54, 52]. As the pulse propagates through the medium, bound electronic transitions

can occur or free carriers are generated through photo-excitation. This process can

be triggered by way of single photon or two-photon absorption (1PA or 2PA). If it

were possible to excite all ground state dipoles or valence band electrons were into an

excited state or conduction band, the result would be an entirely different dielectric

material with a new refractive index and absorption properties. This is of course not

possible but each instance of excitation results is some small change in the complex

refractive index, ∆ñ, such that

∆ñ =
n∑
j=0

(
σabs,j

2
+ i

2πσref,j
λ0

)
Nj (12)

where each state has its own absorption and refraction cross sections, σabs and σref

respectively.

This allows for easy expansion of the population dynamics to account for three

and four level systems such as those found in gain media. One need only to define the

excitation and decay terms for each state. It is also possible to add inter-particle terms

such as excited state annihilation and Auger recombination if necessary [35]. However

for most cases, we can approximate the population dynamics with a simple two level

model with a ground state (or valence band),N0, and excited state (conduction band)
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population, N , such that

dN

dt
+
N

τN
=
αI

hν
+
βI2

2hν
. (13)

where α and β are the 1PA and 2PA coefficients and τN is the lifetime of the excited

state or free carrier. For example, E1BTF is a well-characterized 2PA organic dye

with spectral features shown in Figure 4 [40]. In this example, the ground state in a

singlet, S0 or equivalent to N0 in Figure 3. The first excited state is also a singlet,

S1, which undergoes rapid intersystem crossing (sub psec) to the first excited triplet

state, T1. Due to the high triplet state quantum yield, φT , and the rapid excited

singlet decay, this molecule can be appropriately model as a two-level system with T1

replacing N in Equation 13. Saturation can be enforced by expanding α and β and

Figure 4. Ground, excited state and two-photon absorption coefficient spectra for
E1BTF in solution [40]. While these spectra represent absorption and loss, nonlinear
refraction accompanies these effects through the Kramers-Kronig relation [9]. Quantifi-
cation of the population contributions to the nonlinear refractive index is challenging
especially for organic solutions and generally measured experimentally. Note that the
values for β assume a ground state concentration of 50 mM.
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forcing conservation of mass such that

α = σ1N0, β = σ2N0, N0 = N −Ninitial (14)

where Ninitial is the starting ground state population density and σ1 and σ2 are the

1PA and 2PA absorption cross sections respectively. This is often necessary for solu-

tions of organic media or traditional photorefractive crystals where the concentration

of active molecules or donor/trap densities may be limited. That is, the 1PA and

2PA coefficients are not constant. For semiconductors, the density of states is gen-

erally large and saturation is not considered. For these cases, we will use the terms

α0 and β0 to denote their constant values. For the two-level model, the nonlinear

contributions are thus

αNL = σabsN, nNL = σrefN (15)

with σabs taking the value of T1 in our E1BTF example. Note that organic spectra

are often reported as molar extinction coefficients. The conversion from ε in units of

M-1cm-1 to σ in units of cm2 is simply

σ = 3.82x10−21ε. (16)

Thermal Refraction.

When excited states or free carriers decay non-radiatively, this results in thermal

accumulation in the media resulting in a thermo-optic effect. This process can be

quite complicated involving acoustic driven density changes in organic liquid samples

[9, 34] and various temperature dependent dynamics in semiconductors [31]. Since

these thermo-refractive effects are subject to both acoustic transport and diffusion,

a general understanding of the processes are necessary to properly scope the efficacy
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for the timescale of interest.

In organic liquids, we can express the thermal time dynamics as

ρC d∆T
dt
− κ∇2∆T = αI + σabsNI + βI2 (17)

where ∆T is the change in temperature, ρ is the density, C is the heat capacity, and

κ is the thermal diffusivity.

In semiconductor media, virtually every optical property is subject to change in

temperature owing to the thermo-chromism of the bandgap. This in turn effects the

cross-sections of free-carrier absorption and refraction. Acoustic transport in solid

state is generally considered one order of magnitude weaker than for liquids. As a

result, the lifetime of this nonlinearity is governed by diffusion which would have a

time constant, and transit time much longer than the nsec pulse width.

While this general understanding of thermal refractive process are insightful, in

practice comprehensive numerical modeling is computationally intensive particularly

in the effects of non-locality. As a result a more direct phenomenological approach

is adopted. Experimental measurements often report the change in refractive index

as a single value lumping all cumulative effects together. For example, utilizing large

differences in pulse width allows one to resolve instantaneous effects separate from

cumulative effects [47].

2.2 Two Beam Coupling in Resonant Kerr Media

In the most general case assuming parallel polarization, two mutually-coherent,

interacting waves have a total electric field of

~E = A1 exp
[
i
(
~k1 · ~r − ω1t

)]
+ A2 exp

[
i
(
~k2 · ~r − ω2t

)]
+ c.c. (18)
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where |kj| = 2πn0

λj
with n0 equal to the real, linear refractive index of the medium and

λj is the wavelength of light of the jth beam in vacuum. The optical frequencies are

designated by ωj and the complex amplitudes are Aj with j = 1, 2. To relate this

field to experimental data, we define the complex amplitudes as

Aj =
√
Ij exp (iφj) (19)

where Ij is the irradiance of the field (in W/cm2). Equation 18 has a total irradiance

of

I = I1 + I2 + {A1A
∗
2 exp [i (~q · ~r − δt)] + c.c.} (20)

or,

I = IS + 2
√
I1I2 cos(~q · ~r + ∆φ− δt) = IS + IO (21)

with grating vector ~q = ~k1 − ~k2, frequency difference δ = ω1 − ω2, and phase shift

∆φ = φ1 − φ2. This represents an interference pattern resulting from the overlap of

mutually coherent electric fields with a static term, IS = I1 + I2, and an oscillating

term, IO. If the fields are degenerate frequency, δ = 0 and ∆φ is constant, the

interference pattern if fixed, i.e. a standing wave. However, if δ 6= 0 and/or ∆φ

is a function of time, the pattern translates along the direction of ~q either forward

or backward depending on the signs of the time dependent terms. In general, the

amplitude and irradiance variables in Equation 19 are functions of both time and

space transverse to the direction of propagation, e.g. Gaussian temporal and spatial

profiles propagating in the direction of ~kj. Additionally, the phase variables can also

be functions of time and space, e.g. the quadratic phase of a converging beam or

more complicated holographic patterns, and temporal phase resulting from S/XPM.

Figure 5 illustrates Equation 21. In subfigure a), the fields are co-propagating

in the +z axis with θ1 = −θ2. As a result, the grating vector, ~q, is purely in the
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x̂ plane. In contrast, subfigure b) shows counter-propagating field with equal angles

which results in a grating vector purely in the ẑ plane. If θ1 6= θ2, the grating vector

would point somewhere in the x̂ẑ plane according to the vector subtraction definition

of ~q. The grating wavenumber for co-propagation (designated by +)is then defined

as [8]

|~q|+ =
4π sin( θ1−θ2

2
)

λ
(22)

where we have set λ0 = λ1 = λ2 which is a valid assumption for the cases considered

in this work since for non-degenerate frequency interactions, δ is limited to the order

of one GHz and ∆λ is negligible. The grating wavenumber is inversely proportional to

the period or wavelength of the interference pattern. As a result, small angles lead to

large interference pattern wavelengths which have some consequences in traditional

photorefractive media which rely on non-local effects such as carrier mobilities to

enable beam coupling [21]. Small angles also lead to small wavenumbers for co-

propagation which we will show contributes to efficiency issues in Kerr-driven TBC

for different reasons. Alternatively, counter-propagation (-) has the opposite effect

with respect to angle as demonstrated by

|~q|− =
4π cos( θ1−θ2

2
)

λ
. (23)

For this geometry the wavenumber is larger for smaller angles.

If this interference pattern occurs in a nonlinear medium, ñNL, its structure may

be transfered in the form of a holographic grating. Under the proper conditions, this

is one of the enabling features for TBC.
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Figure 5. Interference pattern for (a) co- and (b) counter-propagating fields. As the
grating wavenumber decreases, i.e. small angles of incidence, the interference pattern
period increases. This leads to angular sensitivity for TBC in media relying on nonlocal
mechanism such as the photorefractive effect. If these patterns are transferred to the
nonlinear medium, light can scattering according to the grating vector geometry.

Temporal Convolution.

The existence of a holographic grating is by itself insufficient to insure energy

exchange for two mutually coherent fields. That is, if the interference pattern and

the resultant refractive index grating are exactly in phase the fields will pass through

without exchanging energy. It should be noted that this is also true for nonzero δ

or a time dependent ∆φ. That is, if the pattern is travelling at the same velocity as

the grating, they are still in phase and again, no energy coupling will occur. This

phenomenon can and will be derived in subsequent chapters from classical electromag-

netism, but the Quantum Electrodynamics explanation provides a more descriptive

illustration shown in Figure 6. When the fields are exactly in phase the probability

of scattering in either direction is logically equal and the net effect is zero coupling.

When they are out of phase less than 180 degrees, symmetry is broken, the proba-

bilities are not equal, and one field will be favored over the other. At 90 degrees the

asymmetry is maximum and therefore is the ideal case for TBC. At 180 degrees the

probabilities are again equal. Greater than 180 but less than 360, the preferred field
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changes and finally at 360 the process repeats.

Figure 6. Quantum electrodynamic illustration of the coherent interaction of the in-
terference pattern (solid line) with the induced grating (dashed line). TBC is funda-
mentally coherent. When the grating and pattern in phase or exactly π out of phase,
the net effect is zero energy exchange. For asymmetric interactions, one field will be
favored over the other and TBC can occur.

The magnitude and direction depend on the medium. The photorefractive effect

is one well documented example and takes advantage of non-local formation of space-

charges [61, 32, 21]. Alternatively, TBC may be generated by means of a nonlinearity

that has a finite lifetime where the grating is formed locally, i.e. requires no charge

transport, and will be the subject of the following derivation consistent with Refs.

[46, 62, 8]

A persistent nonlinearity provides one important function critical for TBC by

convolving the source term or forcing function of the interference pattern with the

time decay of the nonlinearity. A good example that has already been introduced

and used throughout the remainder of this work is population redistribution. The

simplest example is a non-saturating two level model where the excited state has the

temporal nature of

dN

dt
+
N

τ
= f [I(t)] . (24)

24



www.manaraa.com

where N is the population density in the excited state (or the number of free carriers),

τ is the lifetime, and f is the source term that is a dependent on irradiance and

time. It is therefore also function of both the static and oscillating terms of the total

irradiance defined by Equation 21. Different classes of media may have very different

source terms. Regardless of the structure of f , Equation 24 has the analytical solution

of

N =

∫ t

−∞
f [I(t′)] exp

(
t′ − t
τ

)
dt′ (25)

which we recognize as a convolution of the source term with an exponential decay. It

should also be noted that in practice the medium may have multiple contributions to

the nonlinear refractive index with different time constants in which case Equation

25 becomes a sum of convolutions [50]. For the sake simplicity we will consider a

medium with only one time constant. If we define a causality function D(t) such

that

D(t) =


exp (−t/τ) t >= 0

0 t < 0

, (26)

we can then rewrite Equation 25 as

N = f ∗D (27)

where the ∗ denotes a convolution of two functions.

The source term, f , is a function of the total irradiance, Equation 21, it will have

a stationary (S) term and an oscillating (O) terms. In general, the source term may

be represented as a power series expansion of irradiance such that

f = aI + bI2 + ... = aIS + bI2
S + 2bISIO + aIO + bI2

O + ... (28)
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where the coefficients a and b represent the material response, e.g. the single and

two photon absorption present in Equation 13. Higher order terms can be added as

necessary.

The population can be solved by substituting Equation 28 into Equation 27 and

distributing the convolution across each source term. The phenomenon illustrated in

Figure 6 can now be demonstrated mathematically. Consider just the contribution

from the linear oscillating term, aIO. Applying the definition of IO from Equation 21

gives oscillating population grating of

Nosc =
{√

I1I2 exp [i(∆φ− δt)] ∗D
}

exp (i2k0x) + c.c. (29)

where we have assumed small angles of incidence such that θ1 = −θ2 placing the

interference pattern entirely in the x̂ plane for the counter-propagating geometry(see

Figure 5). If the phase shift, ∆φ compounds over time due to S/XPM convolved with

the decay function or the frequencies are non-degenerate (δ 6= 0), the population, i.e.

the refractive index grating, with shift. Compare this to the interference pattern, IO,

in the same form,

IO =
√
I1I2 {exp [i (2k0x+ ∆φ− δt)] + c.c.} , (30)

and it becomes evident that the local grating will shift away from the interference

pattern. This de-phasing is not instantaneous but rather evolves through time. As

we have already discussed, Equation 30 describes an interference pattern that is trav-

eling for nonzero δ or a time-dependent ∆φ. The refractive index grating which is

proportional to the population also travels in x̂ but lags due to the convolution in-

tegral. This can be illustrated by expressing the interference pattern and grating as

time dependent phasors shown in Figure 7. If we assume an effectively infinite time
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constant, τN , we can visualize this convolution as a series of vector additions. From

this perspective it is easy to see how these phasors will drift away from one another

over time.

Figure 7. Phasor representation of the interference pattern compared to the refractive
index grating driven by the temporal convolution of population oscillation, Nosc, where
ψ represents the full time dependent argument of the interference pattern. For effec-
tively infinite time constants, we can visualize this a series of vector additions in the
hologram for each time step. From this exercise it is apparent the relative phases will
drift over time.

Nonlinear Coupled Wave Equation.

The next step is to expand the nonlinearity to include absorption and define the

total complex refractive index as

ñ = n0 + nNL +
i

2k0

(α0 + αNL) (31)

where n0 and α0 are the linear refractive and absorptive contributions respectively,

nNL is the real part of the nonlinear refractive index defined by Equation 31, and

k0 = 2πn0

λ0
. The nonlinear absorption, αNL, and refraction terms, nNL, are both

convolution integrals. In the case of population redistribution, the real and imaginary

contributions share a common source and can be combined for simplicity which we

will cover in later sections. Since the nonlinear contributions act as a perturbations,
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we can write the square of the total complex index to a good approximation as [8]

ñ2 ≈ n2
0 + 2n0nNL − i

n0λ0

2π
(α0 + αNL) . (32)

Finally, the system must satisfy the wave equation such that

∇2
⊥
~E +

∂2 ~E

∂z2
− 1

c2

∂2

∂t2
(ñ2 ~E) = 0 (33)

with ∇2
⊥ representing transverse diffraction. Inserting the total field, Equation 18

and applying the slowly varying envelope approximation (SVEA) to the second order

derivatives of z [52] provides

∂2 ~E

∂z2
=

(
2ik1

∂

∂z
− k2

1

)
A1 exp [i (k1z − ω1t)] +

(
2ik2

∂

∂z
− k2

2

)
A2 exp [i (k2z − ω2t)]

(34)

assuming that propagation of either field is limited to small angles of incidence and

primarily in the ±ẑ direction. Equation 34 may be simplifed by assuming λ0 = λ1 =

λ2 and therefore k0 = k1 = ±k2 for the scalar terms. Equation 34 then becomes

∂2 ~E

∂z2
= 2ik0

{
∂A1

∂z
exp [i (k1z − ω1t)]±

∂A2

∂z
exp [i (k2z − ω2t)]

}
− k2

0E (35)

with the ± determining the (+) co- or (−) counter-propagating cases. A similar

SVEA is applied to the second order time derivative to give

1

c2

∂2

∂t2
(ñ2 ~E) = −2iωñ2

c2

∂ ~E

∂t
− ω2ñ2

c2
~E (36)

assuming ω = ω1 = ω2 in the scalar terms and omitting the negligible contributions

from the explicit time dependence in the embedded convolution integrals. Substitut-
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ing Equations 35, and 36 into Equation 33 provides

−i∇
2
⊥
~E

2k0

+
∂A1

∂z
ei(k1z−ω1t) ± ∂A2

∂z
ei(k2z−ω2t) +

ñ2

n0c

∂ ~E

∂t
+ i

ω2

2k0c2
(n2

0 − ñ2) ~E = 0. (37)

Next,Equation 32 is substituted into Equation 37 gives

∂A1

∂z
ei(k1z−ω1t)± ∂A2

∂z
ei(k2z−ω2t) +

1

νp

∂ ~E

∂t
= i
∇2
⊥
~E

2k0

− α0

2
~E+

(
αNL

2
− i2π

λ0

nNL

)
~E (38)

assuming ñ2

n0c
≈ 1

νp
where νp is the phase velocity.

The partial time derivative can be eliminated by switching from the laboratory

frame to the local pulse frame such that[11]

z′ = z, t′ = t− z
νp
,

∂
∂z

= ∂
∂z′
− 1

νp
∂
∂t′
, ∂

∂t
= ∂

∂t′
.

(39)

This is a trivial substitution for the co-propagating case however special care will need

to be taken for the counter-propagating case in the numerical analysis. Equation 38

is now

∂A1

∂z′
ei(k1z

′−ω1t′) ± ∂A2

∂z′
ei(k2z

′−ω2t′) = i
∇2
⊥
~E

2k0

− α0

2
~E +

(
i
2πnNL
λ0

− αNL
2

)
~E (40)

where the first two terms on the right-hand side govern the transverse diffraction

and linear absorption. The final step is to evaluate the last term to determine the

nonlinear and beam coupling operations.

By substituting the nonlinearity definitions for the two-level population redistri-

bution model, Equation 15, into Equation 40, the final term becomes

(
i
2πnNL
λ0

− αNL
2

)
E =

(
i
2πσref
λ0

− σabs
2

)
NE = σNLNE (41)
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where N is the population of excited states or free-carriers. Recall that N is a con-

volution integral, Equation 27, and also a function of the forcing terms, Equation 28,

containing both stationary and oscillatory contributions. Distributing the convolution

integral across the source terms gives

NE = [(aIs + bIS) ∗D]E + {[(2bIS + a) IO] ∗D}E +
[(
bI2
O

)
∗D
]
E. (42)

The first term in Equation 42 will drive typical excited state or free carrier absorption

and refraction similar to the single beam case. The second and third terms govern the

interaction between the interference pattern of the electric fields and the population

grating which in turn drives the complex refractive index grating. Recalling the

definition of IO from Equation 21, the convolution integral in the second term of 42

can be rewritten as

[(2bIS + a) IO] ∗D =
{

(2bIS + a)
√
I1I2 exp [i (~q · ~r + ∆φ− δt)] + c.c.

}
∗D. (43)

The spatial component can be pulled out of the temporal convolution allowing for a

simpler expression. Combining all time-dependent terms into Nosc provides

[(2bIS + a) IO] ∗D = N (1)
osc exp [i~q · ~r] + c.c. (44)

with the time dependent amplitude defined as

N (1)
osc =

[
(a+ 2bIS)

√
I1I2e

i(∆φ−δt)
]
∗D. (45)

Similarly, the final term in Equation 42 will have an oscillating component. How-

ever in this case, the forcing function is quadratic and the interference pattern result-
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ing from this term is

I2
O = 4I1I2 cos2 (~q · ~r − δt+ ∆φ) = I1I2

[
e2i(~q·~r−δt+∆φ) + c.c.+ 2

]
. (46)

Note the additional static term that appears due to the cosine squared. This will

ultimately be absorbed into the first term of Equation 42. With this definition of I2
O

we can write the convolution integral from the third term of Equation 42 as

bI2
O ∗D = 2bI1I2 ∗D +N (2)

osc exp [2i~q · ~r] + c.c. (47)

with

N (2)
osc =

[
2bI1I2e

2i(∆φ−δt)] ∗D. (48)

We may now rewrite Equation 42 as

NE = NstatE +
[
N (1)
osc exp (i~q · ~r) + c.c.

]
E +

[
N (2)
osc exp (2i~q · ~r) + c.c.

]
E (49)

with

Nstat =
(
aIS + bI2

S + 2bI1I2

)
∗D. (50)

Spatial Phase Matching Considerations.

We must now distribute the oscillating terms across the total electric field. In

Equation 49, both the second and third terms will result in four new terms plus

their complex conjugates. Our goal here is to derive a system of ordinary differential

equations governing A1 and A2 and determine which of these new terms will spatially

phase match along the z-axis and experience exponential character. Assuming a

degenerate frequency interaction, i.e. neglecting the ω terms, and recalling ~q = ~k1− ~k2,
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we can define the second term of Equation 49 as

[
N (1)
osce

i~q·~r + c.c.
] [
A1e

i( ~k1·~r) + A2e
i( ~k2·~r) + c.c.

]
= N (1)

oscA1e
i(2 ~k1− ~k2)·~r

+N (1)
oscA2e

i ~k1·~r +N (1)∗
osc A1e

i ~k2·~r +N (1)∗
osc A2e

i(2 ~k2− ~k1)·~r + c.c.

(51)

A similar approach can be taken with respect to the third term such that

[
N (2)
osce

2i~q·~r + c.c.
] [
A1e

i( ~k1·~r) + A2e
i( ~k2·~r) + c.c.

]
= N (2)

oscA1e
i(3 ~k1−2 ~k2)·~r

+N (2)
oscA2e

i(2 ~k1− ~k2)·~r +N (2)∗
osc A1e

i(2 ~k2− ~k1)·~r

+N (2)∗
osc A2e

i(3 ~k2−2 ~k1)·~r + c.c.

(52)

Substitution of Equations 51 and 52 into 49 and then ultimately back into Equa-

tion 40 resolves our coupled amplitude equations. Regardless of geometery, consider

the field traveling in the k2. Neglecting linear absorption and diffraction from Equa-

tion 40, we have

1

σNL

d

dz
A2e

i ~k2·~r = NstatE +N (1)
oscA1e

i(2 ~k1− ~k2)·~r +N (1)
oscA2e

i ~k1·~r +N (1)∗
osc A1e

i ~k2·~r

+N (1)∗
osc A2e

i(2 ~k2− ~k1)·~r +N (2)
oscA1e

i(3 ~k1−2 ~k2)·~r +N (2)
oscA2e

i(2 ~k1− ~k2)·~r

+N (2)∗
osc A1e

i(2 ~k2− ~k1)·~r +N (2)∗
osc A2e

i(3 ~k2−2 ~k1)·~r.

(53)

Dividing the exponential on the left hand side provides the amplitude equation for

A2 such that

1

σNL

dA2

dz
= NstatA2 +N (1)∗

osc A1 +N (1)
oscA2e

i~q·~r +
[
N (1)∗
osc A2 +N (2)∗

osc A1

]
e−i~q·~r

+
[
N (1)
oscA1 +N (2)

oscA2

]
ei2~q·~r +N (2)∗

osc A2e
−i2~q·~r +N (2)

oscA1e
i3~q·~r.

(54)

There first two terms on the right hand side are automatically phase matched and

will be significant regardless of co- or counter-propagation geometry. The remaining
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terms maintain a dependence on ~q in the spatial phase. Generally, these terms are

neglected as they will be insignificant relative to the automatically phase matched

terms for cases where ~q has any appreciable value. Consider counter-propagating

fields where ~q is projected primarily along the axis of propagation (Figure 5). In this

case, only the automatically phase matched terms survive. The magnitude of ~q will

be approximately 2k0 for shallow angles of incidence and greater than k0 for all other

angles less than 90 degrees. The result is a derivation consistent with established

theory for S/XPM-driven, degenerate frequency TBC [15]. Combining all nonlinear

contributions from population redistribution and χ(3) along with linear absorption,

Equation 40 can be converted to a system of coupled amplitude equations such that

d

dz′

 A1

−A2

 =
(
L̂+ N̂

) A1

A2

 . (55)

The linear operator, L̂, which captures transverse diffraction and has the form

L̂ =

 i
∇2
⊥

2k0
0

0 i
∇2
⊥

2k0

 . (56)

The nonlinear operator, N̂ , governs linear and nonlinear absorption, refraction, and

coupling which takes the form

N̂ =

 σNLNstat − α0

2
+ χ(3) (I1 + 2I2) σNLN

(1)
osc

σNLN
(1)∗
osc σNLNstat − α0

2
+ χ(3) (I2 + 2I1)

 (57)

with the off-diagonal terms driving energy transfer.
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Coupled Irradiance and Phase Equations.

The final step will be to convert the amplitude equation into a coupled intensity

(or more accurately, irradiance) and phase equations to resolve the unique features

of TBC in resonant Kerr media. This will further illustrate the inherent differences

between co- and counter-propagating geometries.

Utilizing Equations 5 and 19 and expanding σNL and χ(3), the coupled amplitude

equation for A2 in a counter-propagating geometry may be rewritten as

−d
√
I2

dz
eiφ2 − i

√
I2e

iφ2
dφ2

dz
=[(

i
2πσref
λ0

− σabs
2

)
Nstat −

α0

2
+

(
i
2π

λ
γ − β

2

)
(I2 + 2I1)

]√
I2e

iφ2

+

(
i
2πσref
λ0

− σabs
2

)
N (1)∗
osc

√
I1e

iφ1 .

(58)

Dividing the exponential from the left hand side gives

−d
√
I2

dz
− i
√
I2
dφ2

dz
=[(

i
2πσref
λ0

− σabs
2

)
Nstat −

α0

2
+

(
i
2π

λ
γ − β

2

)
(I2 + 2I1)

]√
I2

+

(
i
2πσref
λ0

− σabs
2

)
N (1)∗
osc

√
I1e

i(φ1−φ2).

(59)

In order to separate this equaiton into real and imaginary components, we define

N (1)∗
osc e

i(φ1−φ2) =
∣∣N (1)

osc

∣∣ ei(∆φ−φNosc )

=
∣∣N (1)

osc

∣∣ cos (∆φ− φNosc) +
∣∣N (1)

osc

∣∣ i sin (∆φ− φNosc)

(60)

where the magnitude and phase of N
(1)
osc is defined by Equation 45. Note that the

phase difference, ∆φ − φNosc , represents the physical shift between the holographic
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grating and interference pattern. The square root may also be addressed with

dI

dz
= 2
√
I
d
√
I

dz
. (61)

With these definitions, Equation 59 can now be split into two equations,

−dI2

dz
= − [σabsNstat + α0 + β (I2 + 2I1)] I2

−
[
σabs

∣∣N (1)
osc

∣∣ cos (∆φ− φNosc) +
4π

λ0

σref
∣∣N (1)

osc

∣∣ sin (∆φ− φNosc)

]√
I1I2

(62)

and

−dφ2

dz
=

2πσref
λ0

Nstat +
2π

λ
γ (I2 + 2I1)

+

[
2π

λ0

σref
∣∣N (1)

osc

∣∣ cos (∆φ− φNosc)−
σabs

2

∣∣N (1)
osc

∣∣ sin (∆φ− φNosc)

] √
I1√
I2

(63)

one governing irradiance and one for phase, respectively. Recalling the definition for

N
(1)
osc from Equation 45 resolves the troubling irradiance ratio in the phase equation

and reconciles the derivation with [8]. An nearly identical set of equations can be

written for I1 with the exception of the complex conjugate of the coupling term in

the nonlinear operator, i.e.

N (1)
osce

−i(φ1−φ2) =
∣∣N (1)

osc

∣∣ e−i(∆φ−φNosc )

=
∣∣N (1)

osc

∣∣ cos (∆φ− φNosc)−
∣∣N (1)

osc

∣∣ i sin (∆φ− φNosc) .

(64)

The opposite sign in the imaginary part leads to one way energy transfer and results

in the set of irradiance and phase equations,

dI1

dz
= − [σabsNstat + α0 + β (I1 + 2I2)] I1

−
[
σabs

∣∣N (1)
osc

∣∣ cos (∆φ− φNosc)−
4π

λ0

σref
∣∣N (1)

osc

∣∣ sin (∆φ− φNosc)

]√
I1I2

(65)
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and

−dφ1

dz
=

2πσref
λ0

Nstat +
2π

λ
γ (I1 + 2I2)

+

[
2π

λ0

σref
∣∣N (1)

osc

∣∣ cos (∆φ− φNosc)−
σabs

2

∣∣N (1)
osc

∣∣ sin (∆φ− φNosc)

] √
I2√
I1

.

(66)

The direction of energy transfer will then be dependent upon the sign of σref and

the argument of the sine terms in Equations 62 and 65. Additionally, if there is not

physical shift between the holographic grating and the interference pattern, these sine

terms go to zero and coupling does not occur.
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III. Methodology

With the theoretical derivations on firm ground, this chapter will focus on the ex-

perimental techniques and numerical recipes utilized for validation. Experimentation,

theory, and simulation are required for rigorous understanding. Upon consensus, the

numerical model may be used for prediction and manipulation for desired application.

3.1 Numerical Modeling

One of the primary objectives of this dissertation is to develop a rigorous numerical

recipe to study the S/XPM-mediated TBC. A comprehensive numerical simulation

will allow for parameter exploration and optimization for desired effects, namely en-

ergy transfer and coherent amplification. First, we must define the parameter space in

question and then correlate these inputs to the desired effects. Certainly the nonlinear

parameters of the medium are critical. 1PA and 2PA coefficients, excited state and

carrier contributions must be quantified and related to real materials. Experimental

parameters are also important such as delay time, chirp structure, and intensity ratio.

Our primary desired effect will be the gain coefficient for energy transfer but also the

qualitative reconstruction of holographic fields will be considered.

To illustrate how self-action effects the spatial shape of the field, diffraction must

be considered. This additional complication requires a Strang split step technique

that separates the linear (diffraction) from the nonlinear operator in

d

dz′

 A1

−A2

 =
(
L̂+ N̂

) A1

A2

 . (67)

[36]. Strang splitting reduces the order of error but comes with some limited compu-

tational cost. Each z slice must be further discretized into a half linear step followed
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by a full nonlinear step and a second half linear step. Because of the looping strategy,

half steps need only be applied to the first and last longitudinal steps. That is, the

intermediate half steps can be combined. The linear operator is then solved using

spectral techniques such Fourier or Hankel transforms.

Because of the counter-propagation geometry requires an iterative algorithm [44],

a full rectilinear approach using fast Fourier transforms is computationally inconve-

nient. Instead, a radial numerical propagation operator is employed following the

procedure outlined by Ref. [20]. By utilizing the Hankel transform formalism, the

electric fields may be defined as vectors rather than a two-dimensional matrices thus

dramatically eliminating the number of data points in memory and calculations in

both the linear and nonlinear operators by orders of magnitude. The Hankel approach

is mathematically and numerically equivalent.

The first step is to discretize the time, radial, and longitudinal thickness parame-

ters. Time and longitude coordinates are evenly space according the total number of

steps desired in each dimension. However, the Hankel transform algorithm requires

sampling along the Bessel zeros of order zero as defined by [20]. This insures that

the sampling will not be evenly spaced. This must be considered when spatially inte-

grating fluence (J/cm2) data in to total energy (J). Fortunately, Matlab’s embedded

trapezoidal numerical integration (trapz) command allows for this non-even sampling.

Once the Hankel transfer functions are calculated, the radial points are defined for

the entirety of the simulation. That is, unlike certain Fourier algorithms, the spatial

sampling never changes. This is both good and bad. For example, it simplifies the

propagation operators but makes far field propagation difficult. This will become

apparent in the holographic transfer simulations shown in Chapter 5.

With the radial, temporal, longitudinal coordinates defined, the next step is to

define the electric fields. Because the experimental data is an apertured plane wave
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(APW) input, the focal plane will have a characteristic Airy disk pattern. This can be

calculated using the procedure outlined in Ref. [4]. This calculation involves solving

a series expansion of Bessel functions until a predefined tolerance is achieved. The

result is a nearly analytical solution to the total APW field at the focal plane. The

temporal pulse utilizes a Gaussian profile such that

At = A0 exp−(t−∆t)2

τ 2
L

(68)

where τL is the pulse width of the laser and ∆T is the relive time shift between pulses.

Note that 68 is applied to the field and not irradiance. The temporal profile (1 x time

steps) and radial profile (radial steps x 1) vectors form the field matrix product (radial

steps x time steps). The field amplitude is then scaled to the square root of peak

irradiance according to the analytical irradiance-fluence-energy relationship using

F0 = πE
4∗λ2N2 , I0 = F0√

πτL
(69)

where E is the total beam energy (J) and N is the optical system F-number. Regard-

less of amplitude input (energy or fleunce), a multiplier can be calculated to convert

to irradiance.

A three dimensional matrix (radial step x longitudinal steps x temporal steps) for

Nstat and Nosc are then initialized for all zeros. If saturation is to be consider, a

ground state population matrix, N0, of the same size is also initialized with uniform

particle density (or concentration).

Next, the split step iterative loops are started as illustrated in 8. The first time step

of the forward propagating field is sent through each longitudinal step utilizing the

split step formalism. At each z-step, the populations of Nstat and Nosc are calculated
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Figure 8. Discretization of temporal pulse and sample spatial dimension. For each
longitudinal step, the linear operator is broken into two half steps as outlined by the
Strang splitting formalism. The nonlinear operator is solved for the full step using the
field calculated by the first half step. The temporal components are solved using a
forward Euler recipe and the population information is stored for initial conditions of
subsequent time steps.

for the next step according to the forward Euler method such that

Nt+1 =
f [I(t)] ∆t+Nt

1 + ∆t/τ
. (70)

Note that Nosc is complex valued where the phase holds the grating delay relative

to the interference pattern. For saturation, mass conservation is controlled by sub-

tracting Nstat and |Nosc| from N0. With the populations calculated, the nonlinear

operator is applied using a fourth order Runge-Kutta (RK4) numerical recipe for the

full longitudinal step which determines the value of the field for the next z step. This

process is repeated until the first time step of the forward propagating field reaches

the rear surface. At each z step the field value is stored and used for the initial con-

ditions in the backward propagation. The first time step of the counter-propagating

field is then sent backward through the medium using the same set of operations not-
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ing the the indexing of the population terms are reversed. This is the first iteration.

A conditional statement is then applied to determine if the results from both propa-

gations are consistent. If not, the same time step is repeated through both forward

and backward propagation until this condition is met. Only then will the next time

step start using the new populations as initial conditions. This process is repeated

until all time steps are completed.

For co-propagation or single beam embodiments, the iterative method is not nec-

essary and that part of the code is turned off. Additionally for rapid evaluation,

diffraction can be ignored as well and a single radial point can be used approximat-

ing a plane wave spatial distribution. For the Fresnel coupling case, the counter-

propagating field is derived from the forward-propagating field at the last surface

according the Fresnel equation and refractive index of the material.

3.2 Experimental

This section will discuss how all these phenomena express themselves experimen-

tally. In 2010, Christodoulides et. al. provided a review of many of these effects [9].

In the introduction of that work, the author states, ”Nonlinear optics is primarily an

experimental discipline!”. It is only through direct observations that we are able to

make assignments of the unique and diverse physical mechanisms.

Z-Scan is a nearly universally accepted experimental apparatus for measuring Kerr

nonlinearities [42]. With open and closed aperture embodiments, this experiment can

quantify both the real and imaginary contributions from χ(3). The beam energy is

kept constant while the sample is translated through a well-characterized focus (along

the optical z-axis for which the experiment is aptly named). Unfortunately, this ex-

perimental geometry is not amenable to measurements of the coherent backscatter of

interest in this work especially in the case of Fresnel coupling. Instead, a fixed sample
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location is employed and the beam energy is varied allowing for a more reliable optical

alignment to the backscatter energy probe. This version of nonlinear measurement

is referred to as I-Scan, or Irradiance Scan. Much of the experimental methodology

presented here has been previously published [19, 48, 50, 47]. Another advantage of

I-Scan is it allows the focal plane of the beam to be re-imaged providing a much richer

objective function for numerical analysis.

For all experimental work, a frequency doubled nsec pulsed Nd:YAG laser was used

(532 nm). This laser system was equipped with a seed laser for single longitudinal

mode operation to increase the coherence length. In previous work [48, 49], this laser

was used to pump a dye laser to generate wavelengths in the near infrared (700 and

785 nm). The pulse width was experimentally measured at 3.6 nsec (1/eHW) using

an oscilloscope and a GaAs photodiode (6 and 10 GHz bandwidth respectively).

Spatially Resolved I-Scan and Fresnel Coupling.

The utility of I-Scan for quantifying third order nonlinear parameters was also

addressed in Ref. [47]. This embodiment includes a third energy probe to collect the

coherent backscatter necessary for this work as shown in Figure 9. The laser light is

conditioned by flood loading a small aperture (2 mm) in the near field of the laser

output. The beam then forms an Airy pattern in the far field of this aperture after

approximately 8 meters of free space propagation. While this sacrifices a significant

portion of the laser energy, the purpose is to provide a smooth, flat field.

The far field Airy pattern has a predictable amplitude and more importantly,

a flat phase distribution. The beam is then collimated and expanded with a 2x

telescope and this Airy beam is then flood loaded onto a second 5 mm aperture

providing a flat top amplitude. A portion of the beam is split and sent to the sampling

arm where the energy and pulse widths are quantified. The remaining light is sent
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Figure 9. Spatially resolved nonlinear beam transmission experimental setup, or I-
Scan. A laser is conditioned to deliver a flat field. A portion of this beam is sampled
to measured incident beam parameters then sent through a focusing lens where the
sample is placed at the focal plane. Backscattered light is collected by the focusing
element and sent to a separate energy meter using the sampling optic for the incident
beam. Light transmitted is captured by the beam collection optics.

through the focusing lens (200 mm achromatic doublet) and finally meets the sample.

The transmitted bean is collected by a long working distance Mitutoyo microscope

objection (20x) as shown in Figure 10. A series of neutral density filters are placed

directly behind the objective to attenuate the beam to an appropriate level for the

collection instruments. The beam is again split and a portion is directed to a silicon

energy probe (Laser Probe Rj-735, not shown) and a second portion is refocused onto

a Spiricon beam profiling CCD. The objective, filters, silicon meter, and CCD are

mounted to a single breadboard with optical z-axis translation for focusing. This

breadboard assembly is referred to as the calibrated fluence profiler, or CFP. Care is

taken to position the sample such that the laser focus is placed on its rear surface. This

is achieved by first positioning the CFP such that the object plane of the objective is

confocal with the focusing lens, i.e. the laser focal plane is imaged on the CCD. The

beam is then blocked and an incoherent light source (green LED) is injected into the
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beamsplitter to illuminate the sample.

Figure 10. The beam collection optics or the calibrated fluence profiler (CFP). A long
working distance, infinite conjugate microscope objective is used along with a 200 mm
achromatic doublet to magnify and an image the focal plane of the laser onto a beam
profiling camera (Spiricon). Filters are utilized in the collimated space to attenuate
the beam within the operational sensitivity of the CCD.

The sample is then independently translated along the optical axis until its rear

surface is in focus. Special care is also taken to insure calibration of each component.

For example, the magnification of the objective is measured with a bar target and each

meter, filter, and splitting factor is measured versus air to provide accurate absolute

energy measurements. With this information the pixel responsivity is then calculated

to provide an absolute fluence map of the focal plane. The image of the Airy disk

focus shown in 11 is an actual laser pulse image collected by this apparatus and is

effectively diffraction limited provided an analytical function for calibration purposes.

Also shown is the numerical processing of the transmitted beam profiles to deliver the

peak transmitted fluence, F0 and the total encircled energy, E(r). In general, The

diffraction limited operation allows for radial analysis providing a critical objective

function for nonlinear beam propagation simulations outlined in subsequent chapters.

Figure 12 shows a typical nonlinear response for E3PA media. In this example, 50
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Figure 11. Instrument response and data processing flowchart for I-Scan apparatus.
The experimental beam generated by the beam conditioning section is nearly diffraction
limited providing an analytical objective for calibration. The radial symmetry of the
apertured plane wave (APW) allows for efficient numerical analysis shown by the block
diagram all performed with MATLAB real time.

mM E1BTF in solution demonstrates a strong nonlinear response in the transmitted

peak fluence, F0, above approximately 1 J/cm2 evidenced from the inset. The spatial

profiles illustrate the effect. In the linear domain, the profile is a typical Airy disk.

As the incident fluence is increased, the beam is preferentially attenuated on axis due

to absorption from the persistent excited state population. A radial average of the

attenuated profile is shown compared to the analytical input.

To quantify Fresnel-driven TBC or Fresnel Coupling, the sample is aligned exactly

normal to the laser beam k-vector to provide optimal spatial overlap both transverse,

r, and longitudinal, z. The coherent backscatter, i.e. the TBC signal, is then col-

lected by the focusing lens in the reverse direction, directed by the beamsplitter, and

quantified by a silicon energy probe. Additional experiments are performed with the

sample slightly tilted to spoil this effect to monitor the single beam transmission

which will be used to baseline the nonlinear parameters of the sample. As an exam-

ple, Figure 13 illustrates the strong Fresnel coupling observed in E1BTF measured
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Figure 12. A typical nonlinear transmission result. The example shown here is a
nonlinear dye, E1BTF [40]. Strong nonlinear absorption is evidenced by the preferential
reduction of energy on axis compared to the analytical Airy disk input.
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I-Scan with a 785nm pump [49, 48]. Nonlinear absorption is observed in the peak

fluence, F0, and total integrated energy, E. Total energy is defined as E(r = max)

where the maximum r value is determined by the CCD field of view. The obvious

difference between F0 and E transmission curves is a consequence of the intensity

dependent nonlinearity as energy off-axis, i.e. the Airy rings, pass through with little

to no attenuation. The Fresnel Coupling signal approaches 70% including the linear

specular reflections from each glass-air interface (approximately 4% from each sur-

face). As a result, the nonlinear self-action in E1BTF in this scenario is dominated

by Frensel-driven TBC and not the expected E3PA absorption.

Figure 13. I-Scan results for 50mM solution of E1-BTF in THF and 2 mm cuvette.
The optical geometry was set to F/40 (5mm aperture and 200 mm focal length lens)
at a wavelength of 785 nm corresponding to the strong 2PA and ESA of the dye. The
reduction in transmitted fluence and energy are coincident with the strong Fresnel
Coupling signal. The dramatic reduction in transmission is often confused with strong
ESA. In this case it is apparent that the primary source of attentuation int the foward
direction is due to Fresnel-driven TBC [49].
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Two Beam Counter-Propagating Experimental Setup.

For the deliberate, degenerate frequency TBC experiments performed in Ref. [49]

and repeated in this work, the CFP assembly was removed and a delay line was

added. The same beam conditioning procedure was used as discussed previously. The

sample was angled to spoil any Fresnel driven TBC. A second set of beam splitter and

focusing lens were added on the opposited side of the sample. Care was taken to insure

the lenses were confocal in order to place the laser focal planes inside the nonlinear

medium. One lens was mounted in a linear translation stage to account for differences

in optical paths of different samples to further insure confocal alignment. A shear

plate was also empolyed to determine planar wavefronts into and out of the optical

system. The delay was approximately 7 nsec in total length and the probe pulse was

positioned temporally in the middle providing ±τL on either side. Since both fields

are derived from the same source, they are degenerate in terms of frequency content.

Additionally, the pump laser is seeded for single longitudinal mode output insuring a

practically transform-limited frequency spectrum (approximately 500MHz in spectral

bandwidth). The introduction of the temporal delay is therefore critical source for

asymmetry and one-way energy transfer [56]. Additionally, one field (probe) may be

attenuated relative to the second (pump) field as yet another form of asymmetry and

analogous to the Fresnel coupling case where the delay is effectively zero.

The counter-propagating geometry can provide some very useful information about

the nature of the TBC mechanism. As the pump pulse shifts through a weaker probe

pulse in time, the direction of energy exchange will flip. The delay corresponding to

this transition is called the zero-energy exchange delay. It’s location indicates the

TBC governing nature. If this transition occurs at zero delay, TBC is purely driven

by either chirp or explicitly non-degenerate frequency inputs [13, 56]. If on the other

hand, TBC is driven by nonlinear accumulation of S/XPM, the transition occurs
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Figure 14. a) Experimental setup of counter-propagating fields with three possible
fixed delays to introduce the asymmetric geometry for degenerate frequency TBC. b)
Temporal waveforms are measured with a pulse width of 3.6 nsec (1/eHW). Note that
the samples are positioned in the focal plane of confocal lenses with a slight tilt to
remove any Fresnel coupling contributions to the TBC signal.

away from the zero time delay, i.e. where the pulses are exactly overlapped [15, 49].

Additionally, if energy is transfered from the lagging pulse to the leading pulse for

equal energy beams, the sign of the nonlinearity is negative and vice versa.

Holographic Amplification.

In addition to energy scaling, TBC is a fundamentally holographic process which

has been demonstrated at length in tranditional photorefractive media [21, 33, 38]. In

order to capture the holographic nature of TBC, a second embodiment of this setup

involves placing a AF1951 bar target transparency in the probe path of a confocal 4f

imaging system configuration [5]. A CCD is placed in the image plane of the optical

system as shown in Figure 15.

The bar target image captured by this CCD is shown in the right of Figure 16.

The middle image is the raw probe beam spatial profile in the object plane without

the bar target and is approximately 5 mm in diameter. the spatial distribution of

the probe beam is lopsided due to the dye laser cavity output and the rings are

a result of the flooded aperture in Figure 9. However, the contrast from the bar

target transparency is easier describable. A much stronger counter-propagating pump
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Figure 15. Experimental setup with AF1951 Bar Target re-imaged in 4f optical ge-
ometry. A weak probe beam is passed through the transparency and focused into the
nonlinear media. A much stronger counter-propagating pump beam is confocally over-
lapped allowing for energy transfer while maintaining the spatial phase information
embedded in the probe field, or coherent amplification.

beam is then aligned such that its focal plane coincides with the Fourier plane of the

bar target. Energy exchange between the strong pump and weak probe maintain

the spatial phase information contained in the probe field and will be discussed in

subsequent sections.

Two Beam Co-Propagating Experimental Setup.

To achieve optimal energy transfer and practical implementation, a co-propagation

geometry would be preferred. In fact, significant amount of the experimental effort

was expended in this task. The procedure outlined in 14 was adjusted such that the

pump and probe beams where both incident on the front surface of the sample. This

allowed for the inclusion of the CFP breadboard for imaging.

The CFP assembly was used to align the two beam in at the focal plane of a

200mm achromat. The rear surface of the sample was then moved into focus. Fol-

lowing alignment, the CFP was translated backward to allow for beam separation in

the field of view of the CCD. Angular separation of the beams was kept small but
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Figure 16. The raw probe image is is approximately 5 mm in diameter nearly filling
the CCD. The bar target is placed in the beam at the object plane of the 4f imaging
system. The CCD focal plane is then placed in the image plane where the Group 1
bars are in focus. The red box illustrates the approximate field of view.

finite with just enough such the beam profiles could be seen separately on the image.

The incident fluence was then increased in an attempt to resolved TBC. As will be

discussed in detail in Chapter 4, co-propagating TBC was never observed in both

semiconductor and 2PA/E3PA media.

Spectral Measurement Using Scanning Fabry-Perot Etalon.

In order to imporve upon the spectral measurements provided by He et. al. [24],

a scanning Fabry-Perot Etalon (FPE) experiment was incorporated into the optical

setup. The FPE apparatus was placed into the scattered field. A shear plate was

utilized to insure the linear Fresnel reflection was well collimated in this path. A 75mm

lens was placed such that its focal plane was centered into the FPE cavity according

the Thor labs instructions. The FPE cavity was mounted in a five axis positioner and

a continuous wave, solid state laser was used as a pilot beam to align the FPE cavity

for optimal performance. Shown in Figure 18, a scanning FPE operates by ramping

the voltage of an intra-cavity piezoelectric transducer to shift the etalon passband. A
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Figure 17. Experimental setup for co-propagating geometry. The pump is split into two
nearly equal energy beams where one is sent into a delay line. The relative energies are
controlled by placing attenuators in the respective paths as necessary. The two fields
are then recombined using a second beam splitter such that the angular separation is
approximately defined by the numerical aperture of the 200mm achromat or roughly
0.1 radians or 6 degrees.

Thor Labs SA200-5B model was utilized in this experiment with a cavity length of

50mm, free spectral range of 1.5GHz, and a resolution of 7.5MHz.

Special care was taken to synchronize the piezoelectric voltage ramp to the 10Hz

repetition rate of the laser resulting in a signficantly slower ramp time than typically

used. This in turn resulted in a noticeable but systematic drift from scan to scan.

However, this low frequency drift was well below the bandwidth of the nsec laser

source and therefore was neglected.

A collection aperture was placed just before the focusing lens to exclude portions of

the linear Fresnel beam for alignment. Also evident in Figure 19 is spatial blooming in

the coherent backscatter as the incident fluence was increased. The aperture diameter

was adjusted to capture enough of this backscatter to provide sufficient signal to noise.

A shear was used to insure collimation of both the linear and nonlinear signals as

required for proper FPE alignment. There was no discernible difference in collimation

from the two signals. Details on the spectral content of the Fresnel coupled TBC signal

is addressed in the Results and Discussion section.
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Figure 18. Alignment of scanning Fabry-Perot Etalon cavity to capture the spectral
content of the scattered field. An entrance aperture was placed just prior to the focusing
lens to spatially filter the signal. A special collection program was written to enable
single shot acquisition at the laser repetition rate of 10Hz.

Figure 19. The entrance aperture was placed just off-center of the linear Fresnel beam
for alignment to collect the bloomed backscatter signal. Both the linear and nonlinear
beams were checked with a shear plate to insure collimation for accuracy.
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IV. Results and Discussion

Early work focused on E1BTF solutions in the near IR (700nm and 785nm) where

linear absorption is negligible [49]. This work is revisited here to the validate the nu-

merical model specifically for the counter-propagating case where no other data exists.

Additional unpublished, follow-up work with E1BTF at 532nm is now presented. At

this wavelength, 2PA cross sections for E1BTF have not been quantified. However,

resonant enhanced 2PA is to be expected [14] and a value is approximated through

numerical fitting of I-Scan data. The numerical model is also applied at this wave-

length where Fresnel coupling, co-propagating TBC, and FPE spectral measurements

were performed. Material inputs are collated in Table 1 shown in the Appendix.

4.1 Fresnel Coupling

Fresnel coupling is by far the simplest to observe experimentally owing to the

optimal overlap of both transverse and longitudinal spatial dimensions. Figure 24

displays the transmission plots for a solution of 0.05 mM E1BTF in THF as a func-

tion of increasing pump fluence at 532nm. The characteristic decrease in both total

energy transmission and drop in peak fluence transmission are present along with the

Fresnel coupled TBC signal as was the case for 785 nm. For reference, fluence trans-

mission is the ratio of the on-axis values of the transmitted beam and the theoretical,

diffraction limited peak fluence. Energy transmission is the spatially integrated flu-

ence divided by the measured input energy. The open circles are the experimental

data and the solid lines are the simulated results from the full diffraction, iterative

split step numerical recipe. Exceptional agreement is achieved for both the energy

and fluence transmission curves. Modest gain is observed in the simulation for the

backward propagating field. However saturation takes effect in the numerical recipe
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and the Fresnel Coupling signal begins to level out soon after threshold. Qualita-

tively, the transfer threshold is well predicted by this model with exponential gain

following experimentally.

Figure 20. Experimental validation of E1BTF I-Scan results with quantified Fresnel
coupled TBC compared with full diffraction simulation. There is strong agreement
both in fluence profile and transmission measurements. TBC simulations match well
until nonlinearity saturates.

Figure 21 is the radial profile for a pump fluence of 1.8 J/cm2. The red line is

the radial average of the experimental data measured at the focal plane with CFP

apparatus, the dashed line is the theoretical, diffraction limited pump beam in the

same location, and the black line is the simulated spatial distribution. Again, we

observe strong agreement for the forward propagating field. Note that energy is

expanding outside of the central lobe in the transmitted beam. This is characteristic of

a negative value for nonlinear refraction and is evident that the numerical simulation
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is capturing both nonlinear absorptive and refractive contributions with values of

3x10-17 cm2 and -1x10-21 cm3, respectively (see Table 1). The apparent presence of

nonlinear refraction is critical for driving Fresnel Coupling.

Figure 21. Simulation of spatial distribution results for E1BTF at 1.8 J/cm2. The
dashed line captures the analytical Airy disk input. The black solid line is the simulated
pump output and the red solid line is the radial average of the experimental result at
this fluence input.

The spatial distribution of the Fresnel Coupled output in the near field of the

nonlinearity cannot be directly measured in this experimental embodiment. However,

numerical simulation can predict this profile. Not that for the Fresnel signal, the

output beam occurs at the front surface of the sample. Figure 22 shows the backward

propagating (Fresnel Coupled TBC signal) as it exits this front surface of the sample
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compared to the input which is the partially reflected pump field (approximately 4%

of the pump output). Gain is accumulated preferentially near the optical axis where

the pump intensity is the strongest as would be expected. This along with diffraction

and nonlinear refraction generates an odd spatial distribution. However, this profile

is consistent with the bloomed output in the far field.

Figure 22. Simulated Fresnel coupled beam profile as it exits the sample compared to
the pump incident and transmitted profiles. Since the probe beam is derived directly
from the pump, the input is a the pump output multipled by the Fresnel reflection
(0.04). The gain in the probe field is apparent with preferentially near the optical axis
where the pump intensity is strongest.

Another observation for E1BTF is that these results are very similar to the pub-

lished results at 785nm [49] illustrating the broadband nature of degenerate TBC in

this material. E1BTF was specifically engineered to work as a broadband nonlinear
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absorber [40], so the presence of TBC throughout Figure 4 is not surprising. For 785

nm, linear loss is negligible and strong excite state resonance delivers both absorptive

and refractive, cumulative nonlinearities leading to ideal conditions. Conversely at

532 nm, linear absorption is stronger near the ground state resonance and the excited

state properties are weaker leading to the diminished coupling efficiency.

Figure 23. Experimental and full diffraction simulation results for TBC energy as a
function of incident pump fluence. A clear quadratic dependence is evident in the
experimental results with qualitative agreement to numerical results. Grid lines in
logarithmic axes indicate a slope of two above threshold. a) Quadratic nature in total
energy transfer to the probe beam and b) quadratic nature of gain coefficient.

Figure 23 illustrates the quadratic nature of both energy coupling and the gain

function with respect to incident pump fluence. The left-hand side plot shows the

experimental energy in the TBC signal. A clear linear regime exists followed by the

nonlinear regime with a slope of two in log space. Simulation results are shown for

comparison. The right-hand side plot is the calculated maximum gain and is also

roughly quadratic but begins to saturate at high pump intensity. It should be noted

that gain values exceed 50 cm-1 for these calculations placing it on the order of typical

photorefractive values but with a near instantaneous response.

Simulations of a single on-axis radial point where also performed without diffrac-
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tion to further resolve more of the qualitative aspects of S/XPM-driven TBC. Figure

24 pump/probe intensities as a function of longitudinal coordinate (z-axis or sample

thickness) and time. The pump beam propagation is from left to right starting with a

Gaussian temporal distribution. As the beam propagates, the pulse is attenuated in

time consistent with the cumulative population nonlinearity. Conversely, the probe

beam propagates right to left and starts with the specular reflection of the pump and

experiences gain as the field approaches front surface of the sample.

Figure 24. Summary of simulated Fresnel coupled TBC in 0.05mM E1BTF solution for
on axis radial coordinate (or plane wave scenario) with no diffraction operator. The
top two plots illustrate the attenuation of the pump beam as it travels left to right in
the medium and amplification of the probe beam as it travels right to left. Along the
y-axis is the time evolution. The pump starts as a transform limited Gaussian profile.

The gain coefficient, Γ is always positive for all points in z and time as shown in

Figure 25. For E3PA media, the gain coefficient is defined as

Γ =
4πσref
λ
|Nosc| sin (φ− ψ) (71)

where |Nosc| is equivalent to a modulation depth, ψ is the phase of the interference

pattern, and φ is the phase of the grating. The term ψ will change over time due

to S/XPM effects. The term φ is the temporal convolution of ψ and will always lag
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insuring that the sine function is negative. This coupled with a negative σref creates

gain in the probe. An opposite sign in σref will place gain in the pump and further

attenuate the probe beam. This asymmetry was experimentally verified by [55]. For

the Fresnel coupled case, the probe beam is derived from the pump meaning that all

accumulated S/XPM in the forward path is transfered to the probe beam. In other

words, the probe beam is effectively pre-chirped or conditioned with a time dependent

phase. As it travels toward the front of the sample, it sees a pump field with smaller

degree of S/XPM with the maximum phase shift between interference pattern and

grating occuring near the front of the sample. Consequently, the argument of the sine

function in Equation 71 is limited to values less than π/2 at least for relevant input

intensities insuring efficient energy transfer throughout the entire pathlength of the

sample.

Figure 25. The middle right compares the probe input (the Fresnel reflection of the
pump beam on the rear surface) to the probe output. Temporal pulse shaping is
apparent. Temporal and longitudinal dependence of the gain coefficient is shown middle
left. The value is always positive indicating that energy is always flowing from pump
to probe throughout the simulation. A maximum value of 60 cm-1 rivals traditional
photorefractive media however that value drops dramatically in the sample.

Also evident in 25 is the pulse shaping nature of the interaction. The pump

field began as a transform-limited Gaussian beam. The probe output is clearly not

Gaussian and indicates that some degree of spectral modulation must be occurring
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which is addressed in the next subsection.

Finally, the monotonic decay and growth of the pump and probe respectively

is shown in 26 with the maximum output of the probe achieving 16% at the front

surface of the sample consistent with experimental results at 532 nm. This monotonic

function is a direct result of the positive gain coefficient throughout the space and

time. As will be shown in subsequent sections, this behavior is not always typical for

other geometries but unique to Fresnel Coupling and speaks to its superior efficiency

and ease of observation.

Figure 26. A 16% pump energy transfer is predicted from the numerical model and
consistent with experimental results for a solution of 50 mM E1BTF. This result is
significantly smaller than the previous results for the same material at 785 nm due to
less favorable constitutive parameters at this wavelength.

Spectral Measurements of Fresnel Coupling.

As was mentioned in the previous subsection, when the pump field passes through

the sample, temporal pulse shaping occurs as a result of the both amplitude and phase

modulation. The probe field is derived from the pump and passes back through the

nonlinear wake left by the pump where further pulse shaping occurs from the complex

nonlinearity and coupling physics. When the probe exits the sample, the temporal

shape may be very different than the initial pump pulse. Furthermore, S/XPM will

61



www.manaraa.com

also add bandwidth through the time dependent phase shifts. Spatially, the intensity

distribution of the laser focus will insure this amplitude and phase modulation is not

uniform. As a result, the angular frequency spectrum of the probe beam will change

and will not be spatially uniform. This can be modeled numerically by transforming

the temporal function of the transmitted probe into frequency space and integrating

along the radial dimension provides an integrated power spectrum. Figure 27 shows

the power spectrum of the transmitted probe field for 1.8 J/cm2 (Fresnel Derived

Probe from Figure 22) compared to experimental data measured using the apparatus

described in Figure 18.

Figure 27. Simulated spectral content of Fresnel coupled beam calculated with a pump
beam of 1.8 J/cm2 compared to experimental results utilizing the Fabry-Perot Etalon
apparatus in Figure 18. Experimental FWHM measurements are in strong agreement
below and above threshold. Numerical results indicate the Fresnel coupled probe beam
should experience a significant increase in bandwidth as well as an approximate 1GHz
shift to lower frequency. Experimental confirmation is inconclusive and may be a result
of relative power contributions from the pump and probe in the far field measurement.

Through numerical simulations, the Fresnel coupled probe beam sees a significant

increase in bandwidth compared to the 0.5 GHz FWHM of the incident pump beam.

The amplitude of the pump has been normalized to demonstrate the relative power for

a 4% reflection. The experimental measurement would also include this signal from
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the front surface reflection indicated by the power sum (orange line of the left hand

side). Numerical results would seem to predict a weak but clearly recognizable hump

on one side of the residual pump signal. Comparison to the experimental results on

the right hand side is inconclusive with perhaps a very small bump on the negative

frequency side of the peak above the TBC threshold. However, experimental artifacts

cannot be fully discarded. Note that the numerical results fully integrate the spatial

extent of the probe in the near field of the sample whereas the experimental results

are a smaller spatial sample taken in the far field which may act to reduce the probe

spectral contribution to the signal. Regardless, the existence of any signal outside

the original pump spectrum was absent. This strongly excludes stimulated Brillouin

scattering as a possible explanation and further validates the SRBS/Fresnel Coupled

TBC theory of nearly degenerate interaction. Also note that the resolution of the

Fabry Perot Etalon used in this work is approximately a 3x improvement from He et.

al. measurements [22].

4.2 Two Counter-Propagating Beams

Similar to the Fresnel coupling case, deliberately mixing two degenerate frequency

beams also results in one-way energy transfer. As previously discussed, the mecha-

nism for this phenomenon can be explained by inherent chirp in the fields or through

the nonlinearities arising from self-action in the media, i.e. S/XPM. The case for

chirp is much more relevant for psec pulse where the time-bandwidth product is more

favorable. In the nsec pulse regime of interest in this work, the single longitudinal

mode laser is effectively transform limited. Apart from this indirect, albeit reason-

able, argument for the S/XPM mechanism, the counter-propagating experiment offers

direct proof consistent with the work of Dutton et. al. [15].

Consider two beams derived from the same source and routed according to the
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Figure 28. One way energy transfer for 50mM E1BTF solution at 700nm was previously
presented for counter-propagating geometry [49]. Experimental results for equal energy
beams are shown in (a) and (b) at opposite relative time shifts with respect to zero.
The direction of energy transfer is reverse and predicted by the plane wave model (c).
Experimental pulse profiles (d) were collected demonstrating energy transfer occurs
from the proceeding pulse to the lagging pulse consistent with a negative refractive
nonlinearity.
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Figure 29. Counter-propagating TBC with attenuated probe beam from Ref [49]. The
qualitative reduction in efficiency is apparent. Furthermore, the probe gain at zero
time delay is appreciable indicating a S/XPM driven phenomenon.

experimental setup shown in Figure 14. If the beams have equal energy and are fo-

cused with the same lens power, the peak irradiance will be identical. Additionally,

if the optics are positioned confocal with the focal plane centered in the nonlinear

medium, the relative paths through the medium will be identical and the accumu-

lation of S/XPM will also be identical so long as the beams are exactly synced in

time such that the peak of the pulses arrive at the focal plane at the same time. As

result, the exchange of energy will be symmetric and the net effect will be appear to

have no coupling. As one beam is delayed relative to the second, the accumulation

of phase modulation becomes asymmetric since the proceeding beam has effectively

traveled through more of the sample before temporal overlap starts. In this case,

one field is favored and energy transfer may be resolved experimentally. Figure 28

illustrates this nature experimentally. A 50 mM solution of E1BTF was exposed with

equal energy pump and probe beams in opposite directions at different relative time
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shifts. The direction of energy transfer swapped with respect to the zero time delay

as expected from the numerical model. Additionally, experimental pulse profiles mea-

sured on a 6GHz oscilloscope identified that energy was transfered from proceeding to

lagging pulse consistent with a negative refractive nonlinearity. Conversely, a positive

nonlinearity would have the opposite effect.

Figure 30. Probe energy ratios for various values of incident fluence and time shift.
(Inset top right) The values along zero time delay versus incident fluence have a cu-
rious oscillating pattern due to the phase wrapping in the gain coefficient where the
holographic grating and interference pattern have shifted greater than 90 degrees. The
change in sign is the gain coefficient reduces the overall efficiency of counter-propagating
TBC relative to the Fresnel coupled case.

For equal energy beams, the zero-energy transfer location is always at zero rela-

tive delay for S/XPM or chirp driven TBC. However, these two mechanisms can be

distinguished by introducing asymmetry in the relative energy, i.e. attenuation of

one the beams which will be designated the probe. Because the S/XPM mechanism

is sensitive to both path length and intensity of the beams, a weaker field will ex-

perience less phase modulation even for a zero relative time delay. The chirp driven

phenomenon is governed solely on asymmetric temporal overlap in the medium and
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is insensitive to intensity [13] thus maintaining the zero-energy transfer at the zero

relative time delay regardless of intensity. Figure 29 shows counter-propagating TBC

for 50mM E1-BTF at 700nm with an attenuated probe at different relative time de-

lays. Qualitative reduction in efficiency and appreciable probe gain at the zero time

delay are indicative of a S/XPM driving mechanism as would be expected for a nsec

timescale.

Figure 30 shows the probe energy ratio, i.e. probe out divided by probe in, for

various incident peak fluence values and time shifts. The probe energy was kept

constant and the pump was increased according the fluence markers. The probe will

experience gain for the negative time shift as has already been addressed due to the

negative refractive nonlinearity but a curious effect occurs at the zero time delay. Inset

in Figure 30 is the probe energy ratio at zero delay versus incident fluence and the

trend appears to oscillate. Initially, the gain is modest then grows to peak just above

1 J/cm2 and then strangely reverses course counter to previous numerical studies [15].

This decay continues until a minimum occurs where energy is actually flowing back

into the pump. This course reverses yet again and probe gain grows back in. The

reason for this is that the gain coefficient changes sign in the (z,t) plane due to the

sine function in Equation 71 and illustrated in Figure 6. If the phase shift between

holographic grating and interference drifts beyond 90 degrees, the energy transfer

with switch directions and appears to be the case in the simulation. Additionally,

the overall efficiency for counter-prop TBC with a weak probe is noticeably weaker

than the Fresnel coupled case as evidenced by the weaker gain coefficients. This is

presumed to be a result of this phase wrapping and reversal of the gain which is

absent in the Fresnel case due to the fact that probe field is always derived from the

pump field and is therefore pre-conditioned, or pre-chirped, due to the double pass

nature of that phenomenon.
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Coherent Amplification.

Figure 31. Experimental verification of coherent amplification using a bar target ar-
ranged in a 4f optical geometry. Just above threshold, probe gain is apparent with
and without the bar target object in place. A higher pump intensities, the spatial in-
formation begins to distort likely from intrinsic blooming from the negative nonlinear
index of refraction. However, the bar target is still clearly discernible.

Recently, we were able to show in the laboratory that energy transfer in degenerate

frequency TBC is indeed coherent by placing the coupling medium at the Fourier

plane of a bar target object illuminated by a weak beam (see Figure 15). We then

aligned a strong pump field to overlap the weak beam in the Fourier plane and were

able to observe a qualitative increase in the bar target image intensity. Without the

bar target in place, amplification is also present in the raw probe where the energy in

the beam profile is strongest in the lop left-hand side. This is of course a result of the

nonlinear mechanism is also present when the transparency is in place. For example,

in the lower left figures, the energy is not uniformly illuminated on the bars and the

area of highest intensity sees the amplification.
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The coherent amplification had a frequency of greater than 10Hz which was the

upper limit of the imaging camera and the rep rate of the pump laser. It is likely this

can be much larger since we know the nonlinear lifetime is on the order of 100s of

nanoseconds enabling cycle times of kHz to MHz. There is a loss of contrast which is

to be expected given the nonlinearity which preferentially couples on axis providing

a effective low pass filter. Additionally, the negative nonlinear refraction results in

a strong blooming effect. Still the features of the bar target are clearly discernible.

It should also be noted that this is clearly not phase conjugate interaction as has

been described by He et. al. [22]. Indeed, the presence of far field blooming the

Fresnel coupled beam are clear indications that the process is not a phase conjugate

interaction, and futhermore, TBC by definition is not a phase conjugation mixing

process.

This coherent amplification can also be demonstrated with the numerical radial

beam propagation recipe. However, in order to propagate the beams between the

near and far fields relative to the sample, a linear transfer function must be included.

Figure 32 illustrates the simulation. First, the weak probe beam is defined as a

contrast object of concentric rings analogous to the rectilinear bar target example

shown experimentally. This amplitude function with uniform phase is propagated to

the lens using the Fresnel integral such that

E2(r2, z) =
keikz

iz
e

ikr22
2z

∫ ∞
0

r1E1(r1)e
ikr21
2z J0

(
k

z
r1r2

)
dr1. (72)

The integral is solved numerically in MATLAB. Once at the lens location, the lens

function is applied such that

E2(r2) = E1(r1)e
−ikr21

2f (73)
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Figure 32. Coherent amplification simulation illustrating the transfer of spatial phase
information from a weak probe beam consisting of concentric rings. The probe is prop-
agated from input to lens to sample using a numerical evaluation of the Fresnel integral
which allows for resampling the near the focal plane. The pump field is analytically eval-
uated at the opposite side fo the sample and the numerical counter-propagation TBC
recipe is used to calculate the exit probe field. A series of Fresnel transfer functions
and lens function is completed to render the amplified probe field in the observation
plane. Gain and spatial blooming are evident in the radial cross-sections consistent
with experiment.
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where f is the focal length of the lens. Next, the probe field is propagated with the

Fresnel integral to the entrance plane of the sample which allows for rescaling of the

radial coordinate which is not available in the Hankel propagator. This resampling

provides a greater resolution at the much smaller spatial scale of the focal plane and

additionally allows for sampling with the specific Bessel zeros algorithm required for

the Hankel propagator. The pump field is analytically calculated at the opposite end

of the sample and the TBC numerical simulation is applied. The resultant probe

field is then propagated out to the second lens again using the Fresnel integral. The

second lens function is applied followed by free space propagation the observation

plane. The input and amplified probe spatial distributions are rendered in Figure 32.

Amplification as well a blooming is present in the radial cross section consistent with

the experimental results.

Contrast or modulation loss is a direct result of the intensity dependent nonlinear-

ities and the spatial distribution of the pump and probe in the Fourier plane. Due to

this effect, the gain profile takes a spatial distribution that favors energy on axis and

effectively acts as a low pass filter. Additionally, the same phenomenon generates a

weak lensing effect that blooms the output in the image plane. This is unfortunately

a practical limitation of the experimental setup. Due to the high fluence necessary

to drive coupling, approximately 1 J/cm2, the sample had to be placed in the laser

focus. Theoretically, if a plane wave input can be achieve with the requisite intensity,

e.g. in the near field of a pulsed laser, it may be possible to eliminate these deleterious

spatial blooming and low pass filtering effects. This may be useful for power scal-

ing and holographic amplification applications. Additionally, even the Fourier plane,

the low frequency information of the target is apparent and may still be useful for

applications involving compressive sensing where object detail is less important, e.g.

autonomous vehicles.
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This concept can be easily applied to arbitrary rectilinear fields by implementing

a fast, Fourier transform (FFT) formalism. However, this comes with the obvious

computation cost due to the larger memory requirements.

4.3 Two Co-Propagation Beams

The most glaring result of this work was the apparent absence of degenerate

frequency TBC in the co-propagating geometry for any semiconductor or organic

dye system. Given the experimental results of previous works presented in Chapter

1 [13, 15, 55] and the steady-state models for Kerr media [46, 8], this absence was

surprising. A great deal of care was put into adjusting multiple relative temporal

delays. Both positive and negative delays of the probe were considered relative to the

pump, i.e. cases where either the probe proceeded or lagged. Various relative probe

intensities were also considered from a ratio of 1:1 to 1:0.001. Ultimately, the CFP

was employed to insure optimal spatial overlap in the nonlinear media. However, for

each permutation, co-propagating TBC was simply absent.

Figure 33. Co-propagating TBC with 50mM E1BTF in solution with a weak probe
beam and shallow angle of incidence. The rapid cycling of the gain coefficient leads
to negligible energy transfer over the 2mm path length of the cuvette. Numerical
simulations would indicate that a much thinner sample may have a significantly higher
coupling efficiency as the ”coherence length” compresses to shorter and shorter path
lengths and larger gain coefficients.
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The reason for this can be explained in Figure 33 which shows the simulated gain

profile for a co-propagation geometry. Recall the effect of the sine function with

respect to the gain coefficient in the counter propagating scenario. This effect is even

larger in the co-propagting geometry and expresses itself in the form of self-oscillation

and causes energy transfer to swap directions rapidly as shown in 34. This effect is

present regardless of relative time shift and is unique to the co-propagating geometry

as the probe field only experiences gain in the wake of the strong pump field and

consequently observes intense cross-phase modulation.

Figure 34. Co-propagating TBC with 50mM E1BTF in solution with a weak probe
beam and shallow angle of incidence. The rapid cycling of the gain coefficient leads
to negligible energy transfer over the 2mm path length of the cuvette. Numerical
simulations would indicate that a much thinner sample may have a significantly higher
coupling efficiency as the ”coherence length” compresses to shorter and shorter path
lengths and larger gain coefficients.

In Figure 35, we can see that for our 2 mm sample, the coupling with a weak

probe beam would appear to be minimal. This has the qualitative effect of a coher-

ence length although physically different than the quasi-phase matching. That is, if

the sample was 200 microns thick, co-propagation coupling may have been observed.

This of course will require more experimental work to validate but the prediction for

self-oscillation in this geometry would seem to indicate TBC in co-propagating fields
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for S/XPM-driven TBC is challenging but not impossible. Furthermore, the ampli-

tude of the gain coefficients are significantly larger than even the Fresnel coupling

case indicating that under the right circumstances, co-propagation may be extremely

efficient. At the 200 micron optimum thickness the energy transfer exceeds 70%.

Figure 35. Co-propagating TBC with 50mM E1BTF in solution with a weak probe
beam and shallow angle of incidence. The rapid cycling of the gain coefficient leads
to negligible energy transfer over the 2mm path length of the cuvette. Numerical
simulations would indicate that a much thinner sample may have a significantly higher
coupling efficiency as the ”coherence length” compresses to shorter and shorter path
lengths and larger gain coefficients.

4.4 Degenerate TBC in Semiconductor Media

Our most recent work employed E3PA organic dye molecules in solution. While

this may be acceptable for some applications, a solid state solution is desirable for

practical purposes. In general, there is no reason that this phenomenon should not

occur 2PA/FCR active semiconductor media. In fact, the nonlinearities may be sig-

nificantly larger [9] and because this type of media can be pumped in the band gap,

there is negligible linear losses. The challenge with these materials lies in the free car-

rier lifetime. Since the resonant nonlinearity is a result of the free carrier refraction,

it is critical these carriers live long enough to facilitate energy transfer. Therefore

we may need to characterize the lifetimes of the nonlinearities via pump/probe spec-
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Figure 36. Energy transfer for co-propagating fields in semiconductor media with
increasing free carrier lifetime. Single shot LIDT occurs at approximately 4 J/cm2.
The bold, purple line indicates the expected 10nsec lifetime of high quality ZnSe but
the gain occurs near the LIDT horizon making TBC observation challenging.
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troscopy. A high quality ZnSe sample was tested at 532nm in each geometry and TBC

was not observed for any permutation. Furthermore, low laser induced damage was

observed near the nonlinear threshold which limited pump intensity to levels that are

expected to be below the TBC signal gain for ZnSe carrier lifetimes. TBC simulations

for ZnSe are shown in 36. Each curves shows the quadratic gain in TBC signal with

increasing nonlinear lifetime. The bold line indicates the expected result for ZnSe

with the shaded red region signifying the observation of laser induced damage.
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V. Conclusions

Degenerate frequency TBC has a rich history in nonlinear Kerr media dating

back forty years examining chirp and phase-modulation driven mechanisms. Previ-

ous studies focused almost exclusively in psec excitation for the high peak intensities

and large spectral bandwidths those sources. Due to the relatively weak nonlinear-

ities present at that timescale, the observations were largely treated as deleterious

effects in ultrafast spectroscopy or laser cavity efficiencies and practical uses in holo-

graphic amplification for degenerate frequency TBC were never fully realized. The

phenomenon may have been relegated to obscure corners of nonlinear optics if not for

the emergence SRBS in resonant Kerr media in the mid-2000s. The strong coupling

efficiencies achieved in SRBS would seem to overcome a practical limitation in tempo-

ral responsivity present in traditional photorefractive devices, or reciprocity failure.

The academic communities working SRBS have responded with material science en-

gineering of the resonant Kerr media in an attempt to optimize the coupling signal.

However, without a comprehensive analytical model, progress has been limited. This

work provides such a model both in theory and numerical analysis to inform ongoing

material development.

From the experimental and computational results in this work, it is apparent

that the accumulation of S/XPM is strongly dependent upon the directionality and

asymmetry of the pump and probe fields. For example, energy exchange between

co-propagating beams in E3PA and semiconductor media is virtually non-existent

experimentally regardless of asymmetry because of the presence of self-oscillation or

phase wrapping in the gain coefficient. Counter-propagating fields do exhibit modest

energy exchange and have been shown in this work to amplify phase information in the

form of a bar target transparency image. Finally, the most efficient case occurs when

the probe field is derived from the pump through some means of elastic scattering
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with the most efficient in terms of threshold being the Fresnel reflection from the

rear surface of the sample. It has been shown in this work that in this case, phase

wrapping and self oscillation is suppressed for relevant pump intensities due to the

effective pre-conditioning of probe signal due to the unique geometry.

This Fresnel case is the source of much interest in the SUNY-Buffalo group of He

et. al. studying SRBS. With the model and numerical simulation provided in this

work, we have identified the important material parameters and resolved the geomet-

rical constraints that govern degenerate frequency S/XPM-driven TBC. With this

understanding, it is now possible to begin the next process of application. The mate-

rial engineering by the SUNY-Buffalo group evidenced by the SRBS to SMS transition

may be greatly informed by this analytical and numerical model. Furthermore, the

compounding evidence for the presented theory indicate the direct connection from

the antecedent work of Dutton et. al. to He et. al. and reconciles degenerate fre-

quency TBC of all forms with established nonlinear optics and dynamic holography.

As outlined in the introduction, one of our goals is to show experimentally that for

degenerate frequency TBC is a viable option for real time holographic applications.

We have qualitatively shown this by amplifying the bar target image at a refresh

rate of at 10Hz. This is dramatic improvement in terms of cycle time relative to

transitional photorefractive media [2] and overcomes the reciprocity failure of those

devices. While the gratings for S/XPM-driven TBC have been quantified and shown

to be on the order of photorefractive devices, the overall efficiencies are still quite

weak. The next stage of this work will require a deeper investigation using the

numerical tools provided here to engineer materials and optical geometries that can

be optimized for power scaling and coherent transfer. For example, we know that in

Fresnel coupling the probe field is derived from the pump field with a preconditioned

temporal phase and that this is the reason the gain coefficient is alway positive. It
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may be possible to utilize this same concept by pre-conditioning pump or probe fields

externally before the coupling stage to optimize efficiency. In fact this is addressed

in a US Patent filed and awarded in this effort [51].

The numerical recipe presented in the work is comprehensive informing power

scaling and coherent amplification application space. Furthermore, the coherent am-

plification experimental results conclude that the phase transfer effect are not phase

conjugate but rather phase additions which may also enable analog compressive sens-

ing technology by extending this work to rectilinear FFT linear operators. For ex-

ample, by mixing the object signal with an orthogonal basis set of spatial phase

functions, one may be able to reconstruct the object with just a limited number of

pulses.

Solid state media such a semiconductors and specifically small band gap semi-

conductors may ultimately be the ideal media. However, this will require reliable

experimental work in the short-wave or mid-wave infrared. Large band-gap media

such as ZnSe contained neither the requisite lifetime nor sufficient LIDT to produce

measurable, reliable TBC of any kind in this work.

Spectral bandwidth measurements and calculations were also presented in the

work and consistent with previous works of He et. al. The nonlinear Fresnel coupled

signal and presumably the SRBS signal are clearly degenerate frequency interactions

void of any influence of Brillouin scattering. The nomenclature of degenerate fre-

quency is subject to interpretation as calculations indicate that some degree of phase

modulation is required for coupling to occur which must result in a frequency shift or

increase in bandwidth. The magnitude of this frequency manipulation however may

simply be too small to resolve even with Fabry Perot Etalon evaluation.

The next chapter of degenerate frequency TBC may be informed by this work and

certainly the theoretical predictions will require experimental validation. Future work

79



www.manaraa.com

must test and confirm the apparent path length dependence in the co-propagating

geometry and the concept of pre-conditioning the pump and/or probe fields for signal

optimization must be reduced to practice. Once these predictions can be experimen-

tally controlled, practical engineering for pulsed laser power scaling and holographic

amplification can be addressed. For example, with proper path lengths and pre-

conditioning, the optimal pulse overlap for high efficiency energy transfer may be

achieved.
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VI. Appendix

Table 1 collates nonlinear optical parameters for representative E3PA organic

media. E1BTF and Silicon Naphthalocyanine (SiNc) have been well characterized by

the community and references are provided. Benzophenone is a unique case as this

material is capable of melt processing into a super-cooled glass at neat concentrations.

Fresnel coupling in neat Benzophenone is easily observed at 532 nm. However, due

to the relatively weak nonlinearities in this system, deliberate counter-propagation

coupling is negligible. Fresnel coupling in SiNc solutions are also observable but due

to strong ground state absorption and solubility limits, counter-propagation coupling

was not observed.

Table 1. Linear and nonlinear optical parameters for organic media.

Parameter E1BTF E1BTF Benzophenone SiNc
(THF) (THF) (Neat) (Toluene)

λ (nm) 785 532 532 532
n 1.4073 [12] 1.4073 [12] 1.638a 1.5019 [29]
Conc. (M) 0.05 0.05 6.09b 0.005
ε0 (M-1 cm-1) 0.2 4.0 4.7x10-3 740 [59]
σ0 (/10-21 cm-2) 0.76 15.4 1.8x10-3 2830
β (cm/GW) 1.0 1.0 3.0 0
σ2 (GM) 840 [40] 0 30.6a 0
γ (/10-5cm2/GW) 5.3c 5.3c 1.8x10a 5.3x10[59]
εT (M-1 cm-1) 47000[40] 38000[40] 7200 [10] 40000 [59]
εS (M-1 cm-1) 0 0 0 10200 [59]
φT 1[40] 1[40] 1 [10] 0.2 [59]
σabs (/10-17cm2) 17.9 3.0 2.75 15.3d

σref (/10-21cm3) -1 -1 -1 -1
a This work.
b Estimated from mol. wt. and density.
c Estimated from toluene data.
d Effective cross section using formalism of [54].
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